Feynman Kernel in Fractional Quantum Systems
DOI:
https://doi.org/10.32628/IJSRST229124Keywords:
Fractional Quantum Mechanics, Feynman Kernel, Caputo DerivativeAbstract
In this paper, we have sketched what is to be known as fractional path integral representation in quantum mechanics. We will begin with fractional Schrödinger's equation in the framework of Caputo fractional derivatives. Furthermore, Feynman kernel for derived path integrals is established.
References
- Muslih, S.I., Agrawal, O.P. and Baleanu, D. A Fractional Schrödinger Equation and Its Solution. Int J Theor Phys 49, 1746–1752 (2010). https://doi.org/10.1007/s10773-010-0354-x
- Dong, J.P., Xu, M.Y.: Some solutions to the space fractional Schrödinger equation using momentum representation method. J. Math. Phys. 48, 072105 (2007)
- Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45, 3339 (2004)
- Wang, S.W., Xu, M.Y.: Generalized fractional Schrödinger equation with space-time fractional derivatives. J. Math. Phys. 48, 043502 (2007)
- A. Iomin, Fractional evolution in quantum mechanics,Chaos, Solitons and Fractals: X, Volume 1, 2019, 100001, ISSN 2590-0544, https://doi.org/10.1016/j.csfx.2018.100001.
- Sabatier, J., Agrawal, O. P., & Machado, J. A. T. (Eds.). (2007). Advances in Fractional Calculus. doi:10.1007/978-1-4020-6042-7
Downloads
Published
2022-02-28
Issue
Section
Research Articles
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
[1]
Omprakash Atale "Feynman Kernel in Fractional Quantum Systems" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 9, Issue 1, pp.164-168, January-February-2022. Available at doi : https://doi.org/10.32628/IJSRST229124