Study of Dispersion Analysis for Various Microstrip Line Configurations Using Finite Difference Method

Authors

  • Santosh Bishwakarma  Research Scholar, University Department of Physics, J. P. University, Chapra, Bihar, India.
  • Dr. Arvind Kumar  Department of Physics, D. A. V. College, Siwan, J. P. University, Chapra, Bihar, India.
  • Dr. K. B. Singh  P.G. Department of Physics, L. S. College, Muzaffarpur, Bihar, India.

DOI:

https://doi.org//10.32628/IJSRST22965

Keywords:

MICs, Dispersion, Microwave, Conformal Mapping Method

Abstract

In this paper, we studied about static analysis and losses of microwave isolated single stripline structure using conformal mapping method. Microstrip lines due to presence of two different dielectric boundaries does not support a pure TEM wave. It is assumed that only the fundamental mode will propagate, but the propagation constant, γ, is a non¬linear function of frequency. Due to the presence of two dif¬ferent dielectrics, the fringing fields experience an in-homogenous dielectric leading to a discontinuity on the field. A parameter called effective permittivity (ϵ_eff ) is introduced, which is always lesser than the permittivity of the substrate as the fields exists both in air and the substrate. Due to the non-TEM nature of the fields, the effective permittivity is dependent on the frequency. This is due to the fact that more field lines will penetrate the substrate with increasing frequency thus increasing the effective permittivity.

References

  1. K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines. Artech House Inc., 1979
  2. B. Bhat and S. K. Koul, Stripline-Like Transmission Lines for Microwave Integrated circuits. Wiley Eastern Limited, 1989.
  3. R. E. Collin, Field Theory of Guided Waves.   McGraw-Hill Book Company Inc, 1960.
  4. D. G. Swanson, Jr., “What’s my impedance,” IEEE Microwave,pp. 72–82, Dec. 2001.
  5. H. E. Stinehelfer, “An accurate calculation of uniform mi¬crostrip lines,” IEEE Trans. Electron Devices, vol. ED-15, pp. 501–506, July 1968.
  6. D. G. Zill and M. R. Cullen, Anvanced Engineering Mathemat¬ics. CBS Publishers & Distributors, 2000
  7. R. A. Waldron, Theory of Guided Electromagnetic Waves. Van Nostrand Reinhold Company, 1970
  8. P. Bhartia and P. Promanick, “Computer-aided design models for millimeter-wave finlines and suspended-substrate microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 1429 – 1435, Dec. 1985.
  9. T. Itoh, “Overview of quasi-planar transmission lines,” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 275–280, 1989.
  10. S. B. Cohn, “Slot line - an alternative transmission medium for integrated circuits,” Microwave Symposium Digest GMTT International, vol. 69, pp. 104 – 109, 1969.
  11. “Slot line on a dielectric substrate,” IEEE Trans. Mi¬crowave Theory Tech., vol. MTT-17, pp. 768 – 778, Oct. 1969.
  12. M. V. Schneider, “Microstrip dispersion,” Proceedings of the IEEE, pp. 144–146, Jan. 1972.
  13. W. J. Getsinger, “Microstrip dispersion model,” IEEE Trans. Microwave Theory Tech., vol. MTT-21, pp. 34–39, Jan. 1973.
  14. P. Bhartia and P. Pramanick, “A new microstrip dispersion model,” IEEE Trans. Microwave Theory Tech., vol. MTT-32,pp. 1379–1384, Oct. 1984.
  15. A. K. Verma and R. Kumar, “A new dispersion model for microstrip line,” IEEE Trans. Microwave Theory Tech., vol. 46,pp. 1183–1187, Nov. 1998.
  16. R. S. Tomar and P. Bhartia, “Modelling the dispersion in a suspended microstrip line,” IEEE MTT-S Digest, pp. 713–715, 1987.
  17. “New dispersion models for open suspended substrate microstrips,” IEEE MTT-S Digest, pp. 387–389, 1988.
  18. B. C. Wadell, Transmission Line Design Handbook. Artech House, 1991.
  19. S. Ramo, J. R. Whinnery, and T. V. Duzer, Fields and Waves in Communication Electronics. Wiley Eastern Limited, 2003.
  20. E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems. Prentice-Hall of India Pvt. Ltd., 2001
  21. K. C. Gupta, “Emerging trends in milimeter-wave cad,” IEEE Trans. Microwave Theory Tech., vol. 46 No.6, pp. 747–755, June 1998.
  22. M. A. R. Gunston, Microwave Transmission-Line Impedance Data. Van Norstrand Reinhold Company, 1972.
  23. S. B. Cohn, “Problems in strip transmission lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp. 119 – 126, Mar. 1978.
  24. B. Bhat and S. K. Koul, “Unified approach to solve a class of strip and microstrip-like transmission lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp. 679 – 686, May 1982.
  25. R. A. Pucel, D. J. Masse, and C. Hartwig, “Losses in microstrip,” IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 342 – 350, June 1968.
  26. R. Garg and I. J. Bahl, “Charecterisitics of coupled microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-27, pp. 700 – 705, July 1979.
  27. S. K. Koul, “Millimeter wave techniques and technology for radar and wireless communication,” 4th international Conference on Millimeter wave and Far Infrared science and Technology (ICMWFST’96), pp. 206–209, Aug. 1996.
  28. P. Bhartia and R. S. Tomar, “New quasi-static models for computer-aided design of suspended and inverted microstrip 21 lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp. 453 – 457, Apr. 1987.
  29. P. Bhartia and P. Promanick, “Computer-aided design models for millimeter-wave finlines and suspended-substrate microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 1429 – 1435, Dec. 1985.
  30. T. Itoh, “Overview of quasi-planar transmission lines,” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 275–280, 1989.
  31. S. B. Cohn, “Slot line - an alternative transmission medium for integrated circuits,” Microwave Symposium Digest GMTT International, vol. 69, pp. 104 – 109, 1969.
  32. “Slot line on a dielectric substrate,” IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp. 768 – 778, Oct. 1969.
  33. M. V. Schneider, “Microstrip dispersion,” Proceedings of the IEEE, pp. 144–146, Jan. 1972.
  34. W. J. Getsinger, “Microstrip dispersion model,” IEEE Trans. Microwave Theory Tech., vol. MTT-21, pp. 34–39, Jan. 1973.
  35. P. Bhartia and P. Pramanick, “A new microstrip dispersion model,” IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp. 1379–1384, Oct. 1984.
  36. A. K. Verma and R. Kumar, “A new dispersion model for microstrip line,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 1183–1187, Nov. 1998.
  37. R. S. Tomar and P. Bhartia, “Modelling the dispersion in a suspended microstrip line,” IEEE MTT-S Digest, pp. 713–715, 1987.
  38. “New dispersion models for open suspended substrate microstrips,” IEEE MTT-S Digest, pp. 387–389, 1988.
  39. B. C. Wadell, Transmission Line Design Handbook. Artech House, 1991.
  40. S. Ramo, J. R. Whinnery, and T. V. Duzer, Fields and Waves in Communication Electronics. Wiley Eastern Limited, 2003.
  41. E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems. Prentice-Hall of India Pvt. Ltd., 2001.

Downloads

Published

2022-12-30

Issue

Section

Research Articles

How to Cite

[1]
Santosh Bishwakarma, Dr. Arvind Kumar, Dr. K. B. Singh, " Study of Dispersion Analysis for Various Microstrip Line Configurations Using Finite Difference Method , International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 9, Issue 6, pp.56-63, November-December-2022. Available at doi : https://doi.org/10.32628/IJSRST22965