Surface Maintenance Analysis of Module PV To Improve Solar PV Performance

Authors

  • Adrian Mansur  Magister 0f Energy, Diponegoro University, Semarang, Central Java, Indonesia adrianmansur@students.undip.ac.id1
  • Heri Sutanto  Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia
  • Jaka Windarta  Faculty of Engineering, Diponegoro University, Semarang, Central Java, Indonesia

DOI:

https://doi.org//10.32628/IJSRST229681

Keywords:

Solar PV, Maintenance, Method, Optimal and Shading

Abstract

The performance and reliability of the SPP module plays an important role in increasing the lifetime of the SPP module, together with the investment period, as an indicator that directly reduces the electricity cost or Levelized Cost of Energy (LCOE) of each SPP installation. In this study the aim was to analyze the effect, relationship and differences in changes in surface dirtiness of the module on the performance of the 50 kWp SPP UPDL Makassar both through frequency intervention and maintenance methods. The results showed that the most optimal maintenance method was the rubbing method with optimal time and cost maintenance in a period of 2 weeks, besides that if maintenance was carried out before entering the rainy season, the module cleanliness pattern was in accordance with previous conditions, even though the amount of output produced was smaller due to reduced radiation values. This study also shows that one of the significant factors on the output of SPP is the impact of shadows on the surface of the module.

References

  1. Perpres No 22, “Lampiran I Perpres Nomor 22 Tahun 2017.pdf.” pp. 67–69, 2017.
  2. L. Bonkaney, S. Madougou, and R. Adamou, “Impact of Climatic Parameters on the Performance of Solar Photovoltaic (PV) Module in Niamey,” Smart Grid Renew. Energy, vol. 08, no. 12, pp. 379–393, 2017, doi: 10.4236/sgre.2017.812025.
  3. IESR, “Energi Terbarukan Indonesia,” no. Mei, 2017, pp. 1–12.
  4. Belhaouas et al., “The performance of solar PV modules with two glass types after 11 years of outdoor exposure under the mediterranean climatic conditions,” Sustain. Energy Technol. Assessments, vol. 49, no. August 2021, p. 101771, 2022, doi: 10.1016/j.seta.2021.101771.
  5. Juaidi, H. H. Muhammad, R. Abdallah, R. Abdalhaq, A. Albatayneh, and F. Kawa, “Experimental validation of dust impact on-grid connected PV system performance in Palestine: An energy nexus perspective,” Energy Nexus, vol. 6, no. May, p. 100082, 2022, doi: 10.1016/j.nexus.2022.100082.
  6. M. Putranto, T. Widodo, H. Indrawan, M. Ali Imron, and S. A. Rosyadi, “Grid parity analysis: The present state of PV rooftop in Indonesia,” Renew. Energy Focus, vol. 40, no. March, pp. 23–38, 2022, doi: 10.1016/j.ref.2021.11.002.
  7. Ihaddadene, M. El hassen Jed, N. Ihaddadene, and A. De Souza, “Analytical assessment of Ain Skhouna PV plant performance connected to the grid under a semi-arid climate in Algeria,” Sol. Energy, vol. 232, no. December 2021, pp. 52–62, 2022, doi: 10.1016/j.solener.2021.12.055.
  8. Firman, M. Cáceres, A. R. González Mayans, and L. H. Vera, “Photovoltaic Qualification and Approval Tests,” Standards, vol. 2, no. 2, pp. 136–156, 2022, doi: 10.3390/standards2020011.
  9. Mussard and M. Amara, “Performance of solar photovoltaic modules under arid climatic conditions: A review,” Sol. Energy, vol. 174, no. June, pp. 409–421, 2018, doi: 10.1016/j.solener.2018.08.071.
  10. PUSDIKLAT, Dasar-Dasar SPP. 2021.
  11. Ramadhani, “Instalasi Pembangkit Listrik Tenaga Surya Dos & Don ’ ts,” p. 277, 2018.
  12. K. Kasim, N. M. Obaid, H. G. Abood, R. A. Mahdi, and A. M. Humada, “Experimental study for the effect of dust cleaning on the performance of grid-tied photovoltaic solar systems,” Int. J. Electr. Comput. Eng., vol. 11, no. 1, pp. 74–83, 2021, doi: 10.11591/ijece.v11i1.pp74-83.
  13. M. A. Solar and T. Ag, “Performance ratio-Quality factor for the PV plant,” Sma, pp. 1–9, 2016.
  14. Charfi, M. Chaabane, H. Mhiri, and P. Bournot, “Performance evaluation of a solar photovoltaic system,” Energy Reports, vol. 4, pp. 400–406, 2018, doi: 10.1016/j.egyr.2018.06.004.
  15. M. Rahman, I. Khan, and K. Alameh, “Potential measurement techniques for photovoltaic module failure diagnosis: A review,” Renew. Sustain. Energy Rev., vol. 151, no. August, p. 111532, 2021, doi: 10.1016/j.rser.2021.111532.
  16. K. Tripathi, M. Aruna, and C. S. N. Murthy, “Performance evaluation of PV panel under dusty condition,” Int. J. Renew. Energy Dev., vol. 6, no. 3, pp. 225–233, 2017, doi: 10.14710/ijred.6.3.225-233.
  17. V Vidyanandan, “An Overview of Factors Affecting the Performance of Solar PV Systems,” 2017. Online]. Available: https://www.researchgate.net/publication/319165448.
  18. Li, W. Liu, J. Li, S. Sun, Z. Wu, and B. Xu, “A method for accurately assessing field performance degradation of PV modules in different geographical regions,” Sustain. Energy Technol. Assessments, vol. 48, p. 101638, Dec. 2021, doi: 10.1016/j.seta.2021.101638.
  19. Hamisu Umar, B. Bora, C. Banerjee, P. Gupta, and N. Anjum, “Performance and economic viability of the PV system in different climatic zones of Nigeria,” Sustain. Energy Technol. Assessments, vol. 43, Feb. 2021, doi: 10.1016/j.seta.2020.100987.
  20. Aboagye, S. Gyamfi, E. A. Ofosu, and S. Djordjevic, “Degradation analysis of installed solar photovoltaic (PV) modules under outdoor conditions in Ghana,” Energy Reports, vol. 7, pp. 6921–6931, Nov. 2021, doi: 10.1016/j.egyr.2021.10.046.
  21. Rawat and # # Hod, “Experimental Investigation of Effect of Environmental Variables on Performance of Solar Photovoltaic Module Performance Evaluation of Solar Photovoltaic Plant View project Experimental Investigation of Effect of Environmental Variables on Performance of S,” Int. Res. J. Eng. Technol., no. December, pp. 13–18, 2017, Online]. Available: www.irjet.net.
  22. Kumar and A. Kumar, “Performance assessment and degradation analysis of solar photovoltaic technologies: A review,” Renew. Sustain. Energy Rev., vol. 78, no. November 2016, pp. 554–587, 2017, doi: 10.1016/j.rser.2017.04.083.
  23. J. Jamil, H. Abdul Rahman, S. Shaari, and Z. Salam, “Performance degradation of photovoltaic power system: Review on mitigation methods,” Renew. Sustain. Energy Rev., vol. 67, pp. 876–891, 2017, doi: 10.1016/j.rser.2016.09.072.
  24. Ilse et al., “Techno-Economic Assessment of Soiling Losses and Mitigation Strategies for Solar Power Generation,” Joule, vol. 3, no. 10. Cell Press, pp. 2303–2321, Oct. 16, 2019, doi: 10.1016/j.joule.2019.08.019.
  25. Kim, M. Rabelo, S. P. Padi, H. Yousuf, E. C. Cho, and J. Yi, “A review of the degradation of photovoltaic modules for life expectancy,” Energies, vol. 14, no. 14. MDPI AG, Jul. 02, 2021, doi: 10.3390/en14144278.
  26. Tanesab, D. Parlevliet, J. Whale, and T. Urmee, “Dust Effect and its Economic Analysis on PV Modules Deployed in a Temperate Climate Zone,” Energy Procedia, vol. 100, pp. 65–68, Nov. 2016, doi: 10.1016/j.egypro.2016.10.154.
  27. Javed, B. Guo, and B. Figgis, “Modeling of photovoltaic soiling loss as a function of environmental variables,” Sol. Energy, vol. 157, pp. 397–407, Nov. 2017, doi: 10.1016/j.solener.2017.08.046.
  28. Al-Addous, Z. Dalala, F. Alawneh, and C. B. Class, “Modeling and quantifying dust accumulation impact on PV module performance,” Sol. Energy, vol. 194, pp. 86–102, Dec. 2019, doi: 10.1016/j.solener.2019.09.086.
  29. Ekici, D. Gurbuz, and B. Bektaş Ekici, “Investigating the Effect of Dust and Dirt on Pv Output Energy,” no. April, 2017, Online]. Available: https://www.researchgate.net/publication/320245749.
  30. S. Pillai and N. Rajasekar, “A comprehensive review on protection challenges and fault diagnosis in PV systems,” Renew. Sustain. Energy Rev., vol. 91, no. July 2017, pp. 18–40, 2018, doi: 10.1016/j.rser.2018.03.082.
  31. Colli, “Failure mode and effect analysis for photovoltaic systems,” Renew. Sustain. Energy Rev., vol. 50, pp. 804–809, 2015, doi: 10.1016/j.rser.2015.05.056.
  32. Younis and M. Onsa, “A brief summary of cleaning operations and their effect on the photovoltaic performance in Africa and the Middle East,” Energy Reports, vol. 8, pp. 2334–2347, 2022, doi: 10.1016/j.egyr.2022.01.155.
  33. Chiteka, R. Arora, S. N. Sridhara, and C. C. Enweremadu, “A novel approach to Solar PV cleaning frequency optimization for soiling mitigation,” Sci. African, vol. 8, p. e00459, 2020, doi: 10.1016/j.sciaf.2020.e00459.
  34. Al Shehri, B. Parrott, P. Carrasco, H. Al Saiari, and I. Taie, “Impact of dust deposition and brush-based dry cleaning on glass transmittance for PV modules applications,” Sol. Energy, vol. 135, pp. 317–324, 2016, doi: 10.1016/j.solener.2016.06.005.
  35. Al-Housani, Y. Bicer, and M. Koç, “Assessment of various dry photovoltaic cleaning techniques and frequencies on the power output of CdTe-type modules in dusty environments,” Sustain., vol. 11, no. 10, 2019, doi: 10.3390/su11102850.
  36. N. Chanchangi, A. Ghosh, S. Sundaram, and T. K. Mallick, “Dust and PV Performance in Nigeria: A review,” Renew. Sustain. Energy Rev., vol. 121, no. May 2019, p. 109704, 2020, doi: 10.1016/j.rser.2020.109704.
  37. S. N. Simiyu, “Optimal cleaning strategy for large scale solar photovoltaic,” no. April, 2020.
  38. A. Azouzoute et al., “Developing a cleaning strategy for hybrid solar plants PV/CSP: Case study for semi-arid climate,” Energy, vol. 228, p. 120565, 2021, doi: 10.1016/j.energy.2021.120565.

Downloads

Published

2022-12-30

Issue

Section

Research Articles

How to Cite

[1]
Adrian Mansur, Heri Sutanto, Jaka Windarta, " Surface Maintenance Analysis of Module PV To Improve Solar PV Performance, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 9, Issue 6, pp.586-609, November-December-2022. Available at doi : https://doi.org/10.32628/IJSRST229681