Study of Convex Spaces and Their Tensor Products

Authors

  • Amaresh Kumar  Research Scholar, University Department of Physics, J. P. University, Chapra, Bihar, India
  • Dr. Md. Mushtaque Khan  Department of Mathematics, K. R. College, Gopalganj, J. P. University, Chapra, Bihar, India

Keywords:

Convex Spaces, Topology, Tensor, Vector Spaces, Functional Analysis.

Abstract

In this paper, we will make considerable use of the notion of a continuous bilinear map X×Y→Z where X, Y and Z are topological vector spaces.

References

[1] Defant, A., The local Radon Nikod´ym property for duals of locally convex spaces, Bulletin de la Soci´et´e Royale des Sciencies de Li`ege, 53e ann´ee, 5 (1984), 233-246.

[2] Dineen, S., Complex analysis on locally convex spaces, North-Holland Math. Stud., 57 (1981).

[3] Complex analysis on infinite dimensional spaces, Monog. Math., Springer- Verlag, 1999.

[4] Dineen, S., Galindo, P., Garc´ıa, D. and Maestre, M., Linearization of

holomorphic mappings on fully nuclear spaces with a basis, Glasgow Math. J., 36 (1994), 201-208

[5] Galindo, P., Garc´ıa, D. and Maestre, M., Entire functions of bounded type on Fr´echet spaces, Math. Nachr., 161 (1993), 185-198.

[6] Horv´ath, J., Topological vector spaces and distributions, Vol. 1, Addison-Wesley, Massachusetts, 1966.

[7] Jarchow, H., Locally convex spaces, B.G. Teubner, 1981.

[8] K¨othe, G., Topological vector spaces I, Springer, London-Berlin-Heidelberg, 1969.

[9] Topological vector spaces II, Springer, London-Berlin-Heidelberg, 1979.

[10] Moraes, L., Holomorphic functions on strict inductive limits, Results Math., 4 (1981), 201-212.

[11] Venkova, M., Properties of Q-reflexive locally convex spaces, J. Korean Math. Soc., to appear.

[12] Q-reflexive locally convex spaces, Thesis, University College Dublin, 2002.

[13] R. Arens, Duality in linear spaces, Duke Math. J. vol. 14 (1947) pp. 787-794.

[14] N. Bourbaki, Éléments de mathématique. VII. Part 1, Les structures fondamentales de Vanalyse. Book II. Algèbre. Chapter III: Algèbre multilinêaire, Actualités Scientifiques et Industrielles, no. 1044, Paris, Hermann, 1948, 2+157+2 pp.

[15] Éléments de mathématique. X. Part 1. Les structures fondamentales de V analyse. Book III. Topologie générale. Chapter X. Espaces fonctionnels; dictionnaire, Actualités Scientifiques et Industrielles, no. 1084, Paris, Hermann, 1949. ii+101 pp.

Downloads

Published

2022-01-30

Issue

Section

Research Articles

How to Cite

[1]
Amaresh Kumar, Dr. Md. Mushtaque Khan "Study of Convex Spaces and Their Tensor Products" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 9, Issue 1, pp.475-479, January-February-2022.