Study of Cubic Spline Approximation in Solving Dynamic Economic Models
Keywords:
MATLAB, Cubic Spline, Economic Models.Abstract
In this paper, we present about to sketch a quick background of the subject, we start with a simple model. And we present about the study of cubic spline approximation in solving Dynamic economic models.
References
[1] H. AKIMA, A new method of interpolation and smooth curve fitting based on local procedures, J. Assoc. Comput. Mach., 17 (1970), pp. 589-602.
[2] C. DE BOOR, A Practical Guide to Splines, Springer-Verlag, New York, 1978.
[3] C. DE BOOR AND B. Swim-1-z, Piecewise monotone interpolation, J. Approximation Theory, 21 (1977), pp. 411-416.
[4] A. K. CLINE, Scalar- and planar-valued curve fitting using splines under tension, Comm. ACM, 17 (1974), pp. 218-223.
[5] It P. DUBE, Univariate blending functions and alternatives, Computer Graphics and Image Processing, 6 (1977), pp. 394-408.
[6] T. M. R. ELLIS AND D. H. McLAIN, Algorithm 514. A new method of cubic curve fitting using local data, ACM Trans. Math. Software, 3 (1977), pp. 175-178.
[7] A. R. FORREST, Curves and surfaces for computer-aided design, Ph.D. Thesis, Univ. of Cambridge, Cambridge, England, July 1968.
[8] D. F. MCALLISTER, E. PAssow AND J. A. ROULIER, Algorithms for computing shape preserving spline interpolations to data, Math. Comp., 31 (1977), pp. 717-725.
[9] D. F. MCALLISTER AND J. A. ROULIER, An algorithm for computing a shape preserving osculatory quadratic spline, ACM Trans. Math. Software, submitted.
[10] E. PASSOW, Piecewise monotone spline interpolation, J. Approximation Theory, 12 (1974), pp. 240-241.
[11] S. PRUESS, Alternatives to the exponential spline in tension, Math. Comp., to appear. [12] H. SPATH, Spline Algorithms for Curves and Surfaces, Utilitas Mathematica, Winnipeg, Canada, 1974.
[12] J. Adda and R. W. Cooper, Dynamic economics: quantitative methods and applications, The MIT
Press, Cambridge, MA, 2003.
[13] S. B. Aruoba, J. Fern´andez-Villaverde, and J. F. Rubio-Ram´ırez, Comparing solution methods for dynamic equlibrium economies, J. Econom. Dynam. Control, 30 (2006), pp. 2477–2508.
[14] R. E. Bellman, Dynamic programming, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2010. Reprint of the 1957 edition, With a new introduction by Stuart Dreyfus.
[15] D. P. Bertsekas, Dynamic programming and stochastic control, Academic Press, New York, 1976.
[16] C.-S. Chow and J. N. Tsitsiklis, An optimal one-way multigrid algorithm for discrete-time stochastic control, IEEE Trans. Automat. Control, 36 (1991), pp. 897–914.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.