Intrusion Detection System Using Various Machine Learning Approaches with Ensemble Learning: A Systematic Review

Authors

  • Ms. Pragati V. Pandit  Research Scholar, SJJTU Jhunjhunu, Rajasthan, India
  • Dr. Shashi Bhushan  Research Guid, SJJTU Jhunjhunu, Rajasthan, India
  • Dr. Uday Patkar  Research Co-Guid, SJJTU Jhunjhunu, Rajasthan, India

Keywords:

Intrusion detection, Machine Learning, ML algorithms, ensemble learning, Random Forest, Decision Tree, XgBoost, Extra Tree.

Abstract

Although feature filtering-based network intrusion detection systems have some drawbacks that make it difficult for security managers and analysts to detect and stop network intrusions in their enterprises, recent years have seen a surge in advanced threat attacks. Using methods for detecting intrusions, information systems are routinely safeguarded and damage is reduced. It safeguards against threats and flaws in physical and virtual computer networks. Machine learning techniques are now being used to build efficient intrusion detection systems. Machine learning techniques for intrusion detection include rule learning, ensemble techniques, statistical models, and neural networks. Techniques used in machine learning ensembles are recognised for performing exceptionally well during the learning process. A suitable ensemble technique needs to be researched in order to build a successful intrusion detection system. In this research, we combined the decision tree, random forest, extra tree, and XGBoost algorithms with a novel ensemble method for intrusion detection in the network. The suggested approach enhances detection precision and was developed using the Python computer language. The developed system is assessed using the CICIDS2017 dataset according to a number of evaluation criteria, such as precision, recall, and f1-score. The detection accuracy is greatly improved by the ensemble approach.

References

  1. Matthew N. Sharma and B. Arora, “Data Mining and Machine Learning Techniques for Malware Detection,” in Advances in Intelligent Systems and Computing, 2021, vol. 1187, pp. 557–567. doi: 10.1007/978-981-15-6014-9_66.
  2. G. McGraw and G. Morrisett, “Attacking malicious code: A report to the Infosec Research Council,” IEEE Softw., vol. 17, no. 5, pp. 33–41, 2000, doi: 10.1109/52.877857.
  3. A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna, “Revolver: An automated approach to the detection of evasive web-based malware,” in Proceedings of the 22nd USENIX Security Symposium, 2013, pp. 637–651. Accessed: Jul. 16, 2022.
  4. R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Secur. Priv., vol. 9, no. 3, pp. 49–51, May 2011, doi: 10.1109/MSP.2011.67.
  5. E. Chien, L. OMurchu, N. F.-5th U. W. on Large-Scale, and U. 2012, “{W32. Duqu}: The Precursor to the Next Stuxnet,” usenix.org, Accessed: Jul. 16, 2022.
  6. E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understanding Linux Malware,” in Proceedings – IEEE. Symposium on Security and Privacy, 2018, vol. 2018-May, pp. 161–175. doi: 10.1109/SP.2018.00054.
  7. K. Bissell and L. Ponemon, “The cost of cybercrime,” Netw. Secur., vol. 2015, no. 10, p. 2, 2015, doi: 10.1016/s1353- 4858(15)30085-4.
  8. Z. Xu, S. Ray, P. Subramanyan, and S. Malik, “Malware detection using machine learning based analysis of virtual memory access patterns,” in Proceedings of the 2017 Design, Automation and Test in Europe, DATE 2017, 2017, pp. 169–174. doi: 10.23919/DATE.2017.7926977.
  9. E. Gandotra, D. Bansal, and S. Sofat, “Malware Analysis and Classification: A Survey,” J. Inf. Secur., vol. 05, no. 02, pp. 56–64, 2014, doi: 10.4236/jis.2014.52006.
  10. K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of malware behavior using machine learning,” J. Comput. Secur., vol. 19, no. 4, pp. 639–668, 2011, doi: 10.3233/JCS-2010- 0410.
  11. K. Shaukat, S. Luo, V. Varadharajan, I. A. Hameed, and M. Xu, “A Survey on Machine Learning Techniques for Cyber Security in the Last Decade,” IEEE Access, vol. 8, pp. 222310– 222354, 2020, doi: 10.1109/ACCESS.2020.3041951.
  12. J. Neil et al., “Graph-based malware detection using dynamic analysis,” Springer, vol. 7, no. 4, pp. 247–258, Nov. 2011, doi: 10.1007/s11416-011-0152-x.
  13. [13]T. Isohara, K. Takemori, and A. Kubota, “Kernel-based behavior analysis for android malware detection,” in Proceedings - 2011 7th International Conference on Computational Intelligence and Security, CIS 2011, 2011, pp. 1011–1015. doi: 10.1109/CIS.2011.226.
  14. [14] T. Kavzoglu and I. Colkesen, “The effects of training set size for performance of support vector machines and decision trees,” gtu.edu.tr, pp. 127–132, 2009, Accessed: Jul. 18, 2022. [15] Y. Chen, A. Narayanan, S. Pang, and B. Tao, “Multiple sequence alignment and artificial neural networks for malicious software detection,” in Proceedings - International Conference on Natural Computation, 2012, pp. 261–265. doi: 10.1109/ICNC.2012.6234576.
  15. A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. Elovici, “Detecting unknown malicious code by applying classification techniques on OpCode patterns,” Secur. Inform., vol. 1, no. 1, Dec. 2012, doi: 10.1186/2190-8532-1-1.
  16. A. Mohaisen and O. Alrawi, “Unveiling zeus: automated classification of malware samples,” May 2013, pp. 829–832. doi: 10.1145/2487788.2488056.
  17. I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, “Opcode sequences as representation of executables for data- mining-based unknown malware detection,” Inf. Sci. (Ny)., vol. 231, pp. 64–82, 2013, doi: 10.1016/j.ins.2011.08.020.
  18. R. Islam, R. Tian, L. M. Batten, and S. Versteeg, “Classification of malware based on integrated static and dynamic features,” Journal of Network and Computer Applications, vol. 36, no. 2. pp. 646–656, Mar. 2013. doi: 10.1016/j.jnca.2012.10.004.
  19. C. Liangboonprakong and O. Sornil, “Classification of malware families based on Ngrams sequential pattern features,” in Proceedings of the 2013 IEEE 8th Conference on Industrial Electronics and Applications, ICIEA 2013, 2013, pp. 777–782. doi:10.1109/ ICIEA.2013. 6566472.
  20. S. P. and D. J. Amjad Hussain Bhat, “Machine learning approach for intrusion detection on cloud virtual machines,” Int. J. Appl. or Innov. Eng. Manag., vol. 2, no. 6, pp. 57– 66, 2013. [22]
  21. Z. Salehi, A. Sami, and M. Ghiasi, “Using feature generation from API calls for malware detection,” Comput. Fraud Secur., vol. 2014, no. 9, pp. 9–18, 2014, doi: 10.1016/S13613723(14)70531-7.
  22. S. Yerima, S. Sezer, I. M.-2014 E. international, and undefined 2014, “Android malware detection using parallel machine learning classifiers,” ieeexplore.ieee.org, pp. 10–14, 2014, Accessed: Jul. 18, 2022.
  23. P. V. Shijo and A. Salim, “Integrated static and dynamic analysis for malware detection,” Procedia Comput. Sci., vol. 46, pp. 804–811, 2015, doi: 10.1016/J.PROCS.2015.02.149.
  24. Y. Li, R. Ma, R. J.-I. J. of S. and I. Applications, and undefined 2015, “A hybrid malicious code detection method based on deep learning,” covert.io, vol. 9, no. 5, pp. 205–216, 2015, doi: 10.14257/ijsia.2015.9.5.21.
  25. J. Teknologi et al., “Feature selection and machine learning classification for malware detection,” journals.utm.my, vol. 77, pp. 2180–3722, 2015, Accessed: Jul. 18, 2022.
  26. C. I. Fan, H. W. Hsiao, C. H. Chou, and Y. F. Tseng, “Malware detection systems based on API log data mining,” in Proceedings - International Computer Software and Applications Conference, 2015, vol. 3, pp. 255–260. doi: 10.1109/COMPSAC.2015.241.
  27. Q. Jamil and M. A. Shah, “Analysis of machine learning solutions to detect malware in android,” in 2016 6th International Conference on Innovative Computing Technology, INTECH 2016, 2017, pp. 226–232. doi: 10.1109/INTECH.2016.7845073.
  28. Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: Android malware characterization and detection using deep learning,” Tsinghua Sci. Technol., vol. 21, no. 1, pp. 114–123, 2016, doi: 10.1109/TST.2016.7399288.
  29. W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, “DL 4 MD : A Deep Learning Framework for Intelligent Malware Detection,” covert.io, pp. 61–67, 2016, Accessed: Jul. 18, 2022. [Online]. Available: https://www.covert.io/research-papers/deep- learningsecurity/DL4MD- A Deep Learning Framework for Intelligent Malware Detection.pdf
  30. H. S. Galal, Y. B. Mahdy, and M. A. Atiea, “Behavior-based features model for malware detection,” J. Comput. Virol. Hacking Tech., vol. 12, no. 2, pp. 59–67, May 2016, doi: 10.1007/S11416- 015-0244-0.
  31. A. Karim, R. Salleh, and M. K. Khan, “SMARTbot: A behavioral analysis framework augmented with machine learning to identify mobile botnet applications,” PLoS One, vol. 11, no. 3, Mar. 2016, doi: 10.1371/JOURNAL.PONE.0150077.
  32. Y. Cheng, W. Fan, W. Huang, and J. An, “A Shellcode Detection Method Based on Full Native API Sequence and Support Vector Machine,” in IOP Conference Series: Materials Science and Engineering, 2017, vol. 242, no. 1. doi: 10.1088/1757899X/242/1/012124.
  33. D. Moon, H. Im, I. Kim, and J. H. Park, “DTB-IDS: an intrusion detection system based on decision tree using behavior analysis for preventing APT attacks,” J. Supercomput., vol. 73, no. 7, pp. 2881–2895, Jul. 2017, doi: 10.1007/s11227-015-1604-8.
  34. O. Aslan and R. Samet, “A Comprehensive Review on Malware Detection Approaches,” IEEE Access, vol. 8. 2020. doi: 10.1109/ACCESS.2019.2963724.
  35. R. Mosli, R. Li, B. Yuan, Y. P.-I. I. C. on Digital, and undefined 2017, “A behaviorbased approach for malware detection,” Springer, vol. 511, pp. 187–201, 2017, doi: 10.1007/978-3-319-67208-3_11.
  36. R. Nix and J. Zhang, “Classification of Android apps and malware using deep neural networks,” in Proceedings of the International Joint Conference on Neural Networks, 2017, vol. 2017-May, pp. 1871–1878. doi: 10.1109/IJCNN.2017.7966078.
  37. S. Hou, A. Saas, L. Chen, Y. Ye, T. B.-P. of the 2017 IEEE, and U. 2017, “Deep neural networks for automatic android malware detection,” dl.acm.org, pp. 803–810, Jul. 2017, doi: 10.1145/3110025.3116211.
  38. H. J. Zhu, T. H. Jiang, B. Ma, Z. H. You, W. L. Shi, and L. Cheng, “HEMD: a highly efficient random forest-based malware detection framework for Android,” Neural Comput. Appl., vol. 30, no. 11, pp. 3353–3361, Dec. 2018, doi: 10.1007/s00521-0172914- y.
  39. P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, “A novel dynamic android malware detection system with ensemble learning,” IEEE Access, vol. 6, pp. 30996–31011, 2018, doi: 10.1109/ACCESS.2018.2844349.
  40. P. Yan and Z. Yan, “A survey on dynamic mobile malware detection,” Softw. Qual. J., vol. 26, no. 3, pp. 891–919, Sep. 2018, doi: 10.1007/S11219-017-9368-4.
  41. T. D. Phan and N. Zincir-Heywood, “User identification via neural network based language models,” Int. J. Netw. Manag., vol. 29, no. 3, May 2019, doi: 10.1002/NEM.2049. [43] S. Arshad, M.
  42. Shah, A. Wahid, A. Mehmood, H. Song, and H. Yu, “SAMADroid: A Novel 3-Level Hybrid Malware Detection Model for Android Operating System,” IEEE Access, vol. 6, pp. 4321– 4339, 2018, doi: 10.1109/ACCESS.2018.2792941.
  43. E. M. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “MalDozer: Automatic framework for android malware detection using deep learning,” DFRWS 2018 EU - Proc. 5th Annu. DFRWS Eur., pp. S48–S59, 2018, doi: 10.1016/J.DIIN.2018.01.007.
  44. C. Hasegawa and H. Iyatomi, “One-dimensional convolutional neural networks for Android malware detection,” in Proceedings - 2018 IEEE 14th International Colloquium on Signal Processing and its Application, CSPA 2018, 2018, pp. 99–102. doi: 10.1109/CSPA.2018.8368693.
  45. H. Alshahrani, H. Mansourt, S. Thorn, A. Alshehri, A. Alzahrani, and H. Fu, “DDefender: Android application threat detection using static and dynamic analysis,” in 2018 IEEE International Conference on Consumer Electronics, ICCE 2018, 2018, vol. 2018-Janua, pp. 1–6. doi: 10.1109/ICCE.2018.8326293.
  46. S. Naz and D. K. Singh, “Review of Machine Learning Methods for Windows Malware Detection,” 2019. doi: 10.1109/ICCCNT45670.2019.8944796.
  47. K. Sethi, R. Kumar, L. Sethi, P. Bera, and P. K. Patra, “A novel machine learning based malware detection and classification framework,” 2019. doi: 10.1109/CyberSecPODS.2019.8885196.
  48. H. Sayadi et al., “2smart: A two-stage machine learning-based approach for run-time specialized hardware-assisted malware detection,” ieeexplore.ieee.org, Accessed: Jul. 19, 2022. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8715080/
  49. A. Mehtab et al., “AdDroid: Rule-Based Machine Learning Framework for Android Malware Analysis,” Mob. Networks Appl., vol. 25, no. 1, pp. 180–192, Feb. 2020, doi: 10.1007/S11036-019- 01248-0.
  50. F. Mercaldo and A. Santone, “Deep learning for image-based mobile malware detection,” J. Comput. Virol. Hacking Tech., vol. 16, no. 2, pp. 157–171, Jun. 2020, doi: 10.1007/S11416-019-00346- 7.
  51. Z. Ma, H. Ge, Z. Wang, Y. Liu, and X. Liu, “Droidetec: Android Malware Detection and Malicious Code Localization through Deep Learning,” arXiv Prepr., Feb. 2020, Accessed: Jul. 19, 2022. [Online]. Available: http://arxiv.org/abs/2002.03594
  52. H. Naeem et al., “Malware detection in industrial internet of things based on hybrid image visualization and deep learning model,” Ad Hoc Networks, vol. 105, 2020, doi: 10.1016/j.adhoc.2020.102154.
  53. X. Pei, L. Yu, and S. Tian, “AMalNet: A deep learning framework based on graph convolutional networks for malware detection,” Comput. Secur., vol. 93, 2020, doi: 10.1016/j.cose.2020.101792.Z. Cheng, X. Chen, Y. Zhang, S. Li, and Y. Sang, “Detecting Information Theft Based on Mobile Network Flows for Android Users,” 2017. doi: 10.1109/NAS.2017.8026853. [56] C. B.-D. Mining and knowledge discovery and undefined 1998, “A tutorial on support vector machines for pattern recognition,” Springer, vol. 2, pp. 121–167, 1998, Accessed: Jul. 20, 2022. [Online].

Downloads

Published

2023-06-30

Issue

Section

Research Articles

How to Cite

[1]
Ms. Pragati V. Pandit, Dr. Shashi Bhushan, Dr. Uday Patkar "Intrusion Detection System Using Various Machine Learning Approaches with Ensemble Learning: A Systematic Review" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 10, Issue 3, pp.1207-1216, May-June-2023.