Curvature Invariance of Invariant Hypersurfaces in 3-Dimensional LP-Sasakian Space Forms

Authors

  • S. N. Manjunath   Lecturer, Department of Science, Govt. VISSJ Polytechnic, Bhadravathi, Karnataka, India.

Keywords:

Invariant, hypersurface, L P-Sasakian manifold.

Abstract

In this work, we investigate the geometric properties of invariant hypersurfaces within 3-dimensional Lorentzian para-Sasakian (LP-Sasakian) space forms. Specifically, we establish that if M ̅ is an invariant hypersurface of a 3-dimensional LP-Sasakian manifold M with constant φ-sectional curvature, then M ̅is curvature-invariant. Utilizing the Gauss equation and the structural compatibility of the LP-Sasakian manifold, it is shown that the curvature tensor of M ̅retains the essential features of the ambient curvature tensor of M, ensuring that M ̅ preserves the curvature characteristics of the ambient space. This result highlights the geometric rigidity and intrinsic curvature symmetry of invariant hypersurfaces in LP-Sasakian geometry.

References

  1. Adnan Al-Aqeel, U.C.De and Gopal Chandran Ghosh, On Lorentzian para-Sasakian manifolds, Kuwait J. Sci.Eng.,31(2), (2004), 1-13.
  2. M.Atceken and S.Keles, Two theorems on invariant submanifolds of a Riemannian product manifold, Indian J.Pure and Appl.Math., 34, (2003),1035-10447.
  3. Bhagwat Prasad, Semi-Invariant Submanifolds of a Lorentzian Para-Sasakian Manifold, Bull. Malaysian Math. Soc. (second series) 21, (1998), 21-26.
  4. C.S.Bagewadi, Venkatesha and N.S.Basavarajappa, On LP-Sasakian Manifolds,Mathematical Sciences, 16, (2008), 1-8.
  5. C.S.Bagewadi , D.G.Prakasha and Venkatesha, Pseudo projectively flat LP-Sasakian manifold with acoefficient ∝, Annales Universitatis Mariae curieSklodowska Lublin-Polonia, LXI, (2007), Section A 1-8.
  6. H.Bayram Karadag and Mehmet Atceken, Invariantsubmanifolds of Sasakian manifolds, Balkan Journal of Geometryand Its Applications, 12(1), (2007), 68-75.
  7. D.E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509,Springer-Verlag, Berlin, (1976).
  8. Cengizhan Murathan, Ahmet Yildiz, Kadri Arslan, and Uday Chand De, On a class of Lorentzianpara-Sasakian manifolds, Proc.Estonian Acad.Sci.Phys.Math., 55(4), (2006), 210-219.
  9. Cihan Ozgur, On weak symmetries of Lorentzian para-Sasakian manifolds, Radovi Mathematicki, 11, (2002), 263-270.
  10. Cihan Ozgur,ϕ - conformally flatLorentzian para-Sasakian manifolds, Radovi Mathematicki, 12,(2003), 99-106.
  11. Cihan Ozgur and Mukut Mani Tripathi,On P-Sasakian Manifolds Satisfying Certain Conditions onthe Concircular Curvature Tensor, Turk J.Math 30, (2006),1-9.
  12. U.C.De, Adnan Al-Aqeel and A.A.Shaikh, Submanifolds of a Lorentzian para-Sasakian Manifold, Bull.Malaysian.Math.Sc.Soc, 28(2), (2005), 223-227.
  13. U.C.De and Anup Kumar Sengupta, CR-Submanifolds of a Lorentzian Para-Sasakian Manifold, Bull.Malaysian Math.Sc.Soc.(second series)23, (2000), 99-106.
  14. Debasish Tarafdar and U.C.De, On a Type of P-Sasakian Manifold, Extracta Mathematicae, 8(1), (1993), 31-36.
  15. U.C.De and Absos Ali Shaikh, Non-Existence ofProper Semi-Invariant Submanifolds of a Lorentzian Para-Sasakian Manifold, Bull.Malaysian Math.Soc.(second series)22, (1999), 179-183.
  16. Kalpana and G . Singh, On AlmostSemi-Invariant Submanifold of a Lorentzian Para-Sasakian Manifold, Bull. Cal. Math. Soc., 85, (1993), 559-566.
  17. Koji Matsumoto , Ion Mihai and Radu Rosca,ξ - Null Geodesic gradient vector fields on alorentzian para sasakian manifolds, J.Korean Math.Soc. 32(1),(1995), 17-31.
  18. Matsumoto.K, On Lorentzian paracontact manifolds, Bull.of Yamagata Uni.Nat.Soc. 12(2), (1989),151-156.
  19. Mihai,I, and Rosca. R, On Lorentzian para-Sasakian manifolds, Classical Analysis, World Scientific Publi,Singapore, (1992),155-169.
  20. X.Senlin and N.Yilong, Submanifolds of product Riemannian manifolds, Acta Mathematica Scientia 20 B (2000), 213-218.
  21. A.Sharfuddin ,Sharief Deshmukh and S.I.Husain, on para Sasakian manifolds, Indian J.Pure appl.Math.,11(7), (1980), 845-853.
  22. A.K.Sengupta, U.C.De and J.B.Jun, Existence of a product submanifolds of an LP-Sasakian manifold witha coefficient α, Bull.Korean Math.Soc. 40(4), (2003), 633-639.
  23. A.A.Shaikh and U.C.De, 3-Dimensional Lorentzian para Sasakian manifolds, Soochow Journal of Mathematics 26(4), (2000), 359-368.
  24. A.A.Shaikh and Sudipta Biswas, On LP-Sasakian Manifolds, Bull.Malaysian Math.Sc.Soc, (second series)27, (2004), 17-26.
  25. M.Tarafdar and A.Bhattacharyya, On Lorentzian para-Sasakian Manifolds, Proceedings of the Colloquium onDifferential Geometry, Debrecen, Hungary, (2000), 25-30.
  26. Uday Chand De and Kadri Arslan,\,\ {\em Certain Curvature Conditions On An LP-Sasakian Manifold with aCoefficient α, Bull.Korean Math.Soc. 46(3), (2009),401-408.

Downloads

Published

2021-07-30

Issue

Section

Research Articles

How to Cite

[1]
S. N. Manjunath "Curvature Invariance of Invariant Hypersurfaces in 3-Dimensional LP-Sasakian Space Forms" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 8, Issue 4, pp.781-786, July-August-2021.