MWCNT/AC Electrode Synthesis on Supercapacitor Performance with NaCl Electrolyte

Authors

  • Nursanti Anjune Mukti  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang 50275, Indonesia.
  • Heydar Ruffa Taufiq  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang 50275, Indonesia
  • Heri Sutanto  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang 50275, Indonesia.
  • Markus Diantoro  Department of Physics, Faculty of Mathematics and Natural Sciences, State University of Malang, Malang, 65145, Indonesia.
  • Worowat Meevasana  School of Physics Suranaree University of Technology111 University Ave, Muang District Nakhon Ratchsima, 30000, Thailand.
  • Agus Purwanto  Department of Chemical Engineering, Faculty of Engineering, Semarang State University, Surakarta, 57126, Indonesia
  • Agus Subagio  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang 50275, Indonesia.

DOI:

https://doi.org//10.32628/IJSRST52310610

Keywords:

Supercapacitors, MWCNT, AC, Electrodes, NaCl

Abstract

The increase in the use of electronics requires high enough energy storage so that the use of supercapacitors is very necessary. The solution is obtained by the presence of carbon-based electrode material (MWCNT / AC). Our research used MWCNT and AC because it has high conductivity using the doctor blade method and a three-electrode system. Electrochemical analysis was performed by adding electrolyte NaCl and tested with CV and EIS. Electrolyte concentration of 2 M NaCl which has a high value of 11.1559 F / g with an energy density of 1580.58 Wh / kg and a power density of 1138017 W / kg. The resistor, capacitor and CPE values in the EIS test are generated respectively R=3.1234 Ω, C=0.0004 F, and Z_CPE=0.0005 F⁄s.

References

  1. Zhang, W. Lu, R. Hartman, L. Qu, and L. Dai, “Nanocomposite Electrodes for High-Performance Supercapacitors,” J. Phys. Chem. Lett., vol. 2, no. 6, hlm. 655–660, Mar 2011, doi: 10.1021/jz200104n.
  2. P. Login, “An Experimental Study of All-Solid-State Mediator Supercapacitor and Fundamental Study of Interfaces in Polymer Electrolyte Fuel Cell”.
  3. H. Onodera and T. Tsubota, “Fabrication of NaCl aqueous electrolyte electric double layer capacitor as practical device and dependence of cell performance on pore structure of activated carbon,” In Review, preprint, Okt 2022. doi: 10.21203/rs.3.rs-2160366/v1.
  4. C. S. Widodo, H. Sela, and D. R. Santosa, “The effect of NaCl concentration on the ionic NaCl solutions electrical impedance value using electrochemical impedance spectroscopy methods,” presented on THE 8TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE: Coverage of Basic Sciences toward the World’s Sustainability Challanges, East Java, Indonesia, 2018, hlm. 050003. doi: 10.1063/1.5062753.
  5. Y. Fujii, Y. Muramoto, and N. Shimizu, “Analysis of electric double layer in aqueous solutions of sodium chloride,” dalam 2010 Annual Report Conference on Electrical Insulation and Dielectic Phenomena, West Lafayette, IN: IEEE, Okt 2010, hlm. 1–4. doi: 10.1109/CEIDP.2010.5724027.[6] J. Keskinen, A. Railanmaa, and D. Lupo, “Monolithically prepared aqueous supercapacitors,” Journal of Energy Storage, vol. 16, hlm. 243–249, Apr 2018, doi: 10.1016/j.est.2018.02.008.
  6. K. Dai, L. Shi, D. Zhang, and J. Fang, “NaCl adsorption in multi-walled carbon nanotube/active carbon combination electrode,” Chemical Engineering Science, vol. 61, no. 2, hlm. 428–433, Jan 2006, doi: 10.1016/j.ces.2005.07.030.
  7. S. Wang, D. Wang, L. Ji, Q. Gong, Y. Zhu, and J. Liang, “Equilibrium and kinetic studies on the removal of NaCl from aqueous solutions by electrosorption on carbon nanotube electrodes,” Separation and Purification Technology, vol. 58, no. 1, hlm. 12–16, Des 2007, doi: 10.1016/j.seppur.2007.07.005.
  8. V. S. Wadi dkk., “Three‐dimensional graphene/MWCNT-MnO2 nanocomposites for high‐performance capacitive deionization (CDI) application,” Journal of Electroanalytical Chemistry, vol. 914, hlm. 116318, Jun 2022, doi: 10.1016/j.jelechem.2022.116318.
  9. H. Jiang, L. Yang, C. Li, C. Yan, P. S. Lee, and J. Ma, “High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires,” Energy Environ. Sci., vol. 4, no. 5, hlm. 1813, 2011, doi: 10.1039/c1ee01032h.
  10. F. Escobar-Teran, H. Perrot, and O. Sel, “Ion Dynamics at the Carbon Electrode/Electrolyte Interface: Influence of Carbon Nanotubes Types,” Materials, vol. 15, no. 5, hlm. 1867, Mar 2022, doi: 10.3390/ma15051867.
  11. Z. Zhang dkk., “The composite electrode of Bi@carbon-texture derived from metal-organic frameworks for aqueous chloride ion battery,” Ionics, vol. 26, no. 5, hlm. 2395–2403, Mei 2020, doi: 10.1007/s11581-019-03389-4.
  12. R. George, K. R. V. Subramanian, F. Jan, and S. Allu, “Sodium ion based supercapacitor development with high capacity and stability,” Materials Letters, vol. 313, hlm. 131767, Apr 2022, doi: 10.1016/j.matlet.2022.131767.
  13. M. Chen dkk., “Porous α-Fe 2 O 3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries,” Nano Energy, vol. 9, hlm. 364–372, Okt 2014, doi: 10.1016/j.nanoen.2014.08.011.
  14. L. F. Lima, A. L. Vieira, H. Mukai, C. M. G. Andrade, and P. R. G. Fernandes, “Electric impedance of aqueous KCl and NaCl solutions: Salt concentration dependence on components of the equivalent electric circuit,” Journal of Molecular Liquids, vol. 241, hlm. 530–539, Sep 2017, doi: 10.1016/j.molliq.2017.06.069.
  15. J. N. Barisci, G. G. Wallace, D. Chattopadhyay, F. Papadimitrakopoulos, and R. H. Baughman, “Electrochemical Properties of Single-Wall Carbon Nanotube Electrodes,” J. Electrochem. Soc., vol. 150, no. 9, hlm. E409, 2003, doi: 10.1149/1.1593045.
  16. D. A. Triana-Camacho, D. A. Miranda, E. García-Macías, O. A. Mendoza Reales, and J. H. Quintero-Orozco, “Effective medium electrical response model of carbon nanotubes cement-based composites,” Construction and Building Materials, vol. 344, hlm. 128293, Agu 2022, doi: 10.1016/j.conbuildmat.2022.128293.
  17. S. Z. N. Haq, E. Kurniawan, and M. Ramdhani, “Analysis Of Power Plants Using Salt Water Media As Electrolyte Solutions”.
  18. P. Lannelongue dkk., “‘Water-in-Salt’ for Supercapacitors: A Compromise between Voltage, Power Density, Energy Density and Stability,” J. Electrochem. Soc., vol. 165, no. 3, hlm. A657–A663, 2018, doi: 10.1149/2.0951803jes

Downloads

Published

2023-12-30

Issue

Section

Research Articles

How to Cite

[1]
Nursanti Anjune Mukti, Heydar Ruffa Taufiq, Heri Sutanto, Markus Diantoro, Worowat Meevasana, Agus Purwanto, Agus Subagio, " MWCNT/AC Electrode Synthesis on Supercapacitor Performance with NaCl Electrolyte, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 10, Issue 6, pp.119-125, November-December-2023. Available at doi : https://doi.org/10.32628/IJSRST52310610