Some results on Trans-Sasakian Manifolds
Keywords:
Trans-Sasakian Manifolds, Concircular Curvature Tensor, Einstein.Abstract
In this paper we show that trans-Sasakian manifolds satisfying the conditions R(X, Y ) · S = 0, C˜(ξ, X) · S = 0 are Einstein.
References
- C.S.Bagewadi and Venkatesha, Some Curvature Tensors on a Trans-Sasakian Manifold, Turk. J. Math., 31, 111- 121, (2007).
- C.S.Bagewadi and Venkatesha, Torseforming vector field in a 3-dimensional Trans-Sasakian Manifold, Differential Geometry-Dynamical Systems, 8, 23-28, (2006).
- D.E.Blair and J.A.Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Matematiques, 34, 199-207, (1990).
- U.C.De and M.M.Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyung- pook Math. J. 43, No.2, 247-255, (2003).
- J.C.Marrero, The local structure of Trans-Sasakian manifolds, Annali di Matematica pura ed applicata. CLXII, 77-86, (1992).
- J.A.Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32, 187-193, (1985).
- A.A.Shaikh, K.K.Baishya and Eyasmin, On D-homothetic deformation of trans-Sasakian structure, Demonstr.
- Math., XLI(1), 171-188, (2008).
- A.Taleshian and N.Asghari, On LP-Sasakian manifolds satisfying certain conditions on the Concircular curvature tensor, Differential Geometry-Dynamical Systems, 12, 228-232, (2010).
- M.M.Tripathi, Trans-Sasakian manifolds are generalised quasi-Sasakian, Nepali Math.Sci. Rep., 18, No.1-2, 11-14, (2001).
Downloads
Published
2015-12-30
Issue
Section
Research Articles
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
[1]
S. N. Manjunath, K. J. Jayashree, P. Rashmi "Some results on Trans-Sasakian Manifolds" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 1, Issue 5, pp.407-411, November-December-2015.