Versatile Chip-Scale Lasers : Bridging Near-Ultraviolet to Near-Infrared Spectra
DOI:
https://doi.org/10.32628/IJSRST2411332Keywords:
Smart Grid, Chip, Power, EnergyAbstract
Narrow-linewidth lasers that are widely tunable in the visible spectrum are crucial for various applications such as quantum optics, optical clocks, and atomic and molecular physics. However, current laser systems are typically bulky and confined to laboratory settings, limiting their practical use beyond research environments. In this study, we introduce a chip-scale visible laser platform capable of producing tunable and narrow-linewidth lasers spanning from near-ultraviolet to near-infrared wavelengths. By leveraging micrometer-scale silicon nitride resonators and off-the-shelf Fabry–Pérot laser diodes, we achieve significant coarse tuning capabilities of up to 12.5 nm, coupled with mode-hop-free fine tuning up to 33.9 GHz. Remarkably, our lasers exhibit intrinsic linewidths as low as a few kilohertz. Additionally, our platform demonstrates impressive fine-tuning speeds of up to 267 GHz per microsecond, alongside fiber-coupled powers reaching up to 10 mW and typical side-mode suppression ratios surpassing 35 dB. These remarkable specifications of our chip-scale lasers rival those previously attainable only with large, state-of-the-art benchtop laser systems. This breakthrough positions our lasers as powerful tools poised to drive the next generation of visible-light technologies, enabling practical applications in various fields beyond the confines of traditional laboratory setups.
Downloads
References
Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586, 538–542 (2020). DOI: https://doi.org/10.1038/s41586-020-2811-x
Moody, G. et al. Roadmap on integrated quantum photonics.
JPhys. Photonics 4, 012501 (2022).
Mehta, K. K. et al. Integrated optical multi-ion quantum logic.
Nature 586, 533–537 (2020). DOI: https://doi.org/10.1038/s41586-020-2823-6
Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014). DOI: https://doi.org/10.1038/nphys3000
Nichol, B. C. et al. An elementary quantum network of entangled optical atomic clocks. Nature 609, 689–694 (2022). DOI: https://doi.org/10.1038/s41586-022-05088-z
Tomza, M. et al. Cold hybrid ion–atom systems. Rev. Mod. Phys. 91, 035001 (2019). DOI: https://doi.org/10.1103/RevModPhys.91.035001
Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017). DOI: https://doi.org/10.1126/science.aal3837
Mitra, D., Leung, K. H. & Zelevinsky, T. Quantum control of molecules for fundamental physics. Phys. Rev. A 105, 040101 (2022). DOI: https://doi.org/10.1103/PhysRevA.105.040101
Will, S. et al. Time-resolved observation of coherent multi-body interactions in quantum phase revivals. Nature 465, 197–201 (2010). DOI: https://doi.org/10.1038/nature09036
Campbell, S. L. et al. A Fermi-degenerate three-dimensional optical lattice clock. Science 358, 90–94 (2017). DOI: https://doi.org/10.1126/science.aam5538
Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photonics 13, 714–719 (2019). DOI: https://doi.org/10.1038/s41566-019-0493-4
Moriya, P. H. et al. Comparison between 403 nm and 497 nm repumping schemes for strontium magneto-optical traps. J. Phys. Commun. 2, 125008 (2018). DOI: https://doi.org/10.1088/2399-6528/aaf662
Ding, R. et al. Creation of vibrationally-excited ultralong-range Rydberg molecules in polarized and unpolarized cold gases of 87Sr. J. Phys. B 53, 014002 (2019). DOI: https://doi.org/10.1088/1361-6455/ab53b5
Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020). DOI: https://doi.org/10.1038/s41586-020-3009-y
Bowden, W. et al. A pyramid MOT with integrated optical cavities as a cold atom platform for an optical lattice clock. Sci. Rep. 9, 11704 (2019). DOI: https://doi.org/10.1038/s41598-019-48168-3
Bongs, K. et al. Development of a strontium optical lattice clock for the SOC mission on the ISS. C. R. Phys. 16, 553–564 (2015). DOI: https://doi.org/10.1016/j.crhy.2015.03.009
Lai, Y.-H. et al. 780 nm narrow-linewidth self-injection-locked WGM lasers. Proc. SPIE 11266, 112660O (2020). DOI: https://doi.org/10.1117/12.2553258
Savchenkov, A. A. et al. Application of a self-injection locked cyan laser for barium ion cooling and spectroscopy. Sci. Rep. 10, 16494 (2020). DOI: https://doi.org/10.1038/s41598-020-73373-w
Donvalkar, P. S., Savchenkov, A. & Matsko, A. Self-injection locked blue laser. J. Opt. 20, 045801 (2018). DOI: https://doi.org/10.1088/2040-8986/aaae4f
Savchenkov, A. A. et al. Self-injection locking efficiency of a UV Fabry–Perot laser diode. Opt. Lett. 44, 4175–4178 (2019). DOI: https://doi.org/10.1364/OL.44.004175
Franken, C. A. A. et al. Hybrid-integrated diode laser in the visible spectral range. Opt. Lett. 46, 4904–4907 (2021). DOI: https://doi.org/10.1364/OL.433636
Chauhan, N. et al. Ultra-low loss visible light waveguides for integrated atomic, molecular, and quantum photonics. Opt. Express 30, 6960–6969 (2022). DOI: https://doi.org/10.1364/OE.448938
Chauhan, N. et al. Visible light photonic integrated Brillouin laser. Nat. Commun. 12, 4685 (2021). DOI: https://doi.org/10.1038/s41467-021-24926-8
Morin, T. J. et al. CMOS-foundry-based blue and violet photonics. Optica 8, 755–756 (2021). DOI: https://doi.org/10.1364/OPTICA.426065
Corato-Zanarella, M. et al. Overcoming the trade-off between loss and dispersion in microresonators. In Conference on Lasers and Electro-Optics paper STh1J.1 (Optica Publishing Group, 2020); https://doi.org/10.1364/CLEO_SI.2020.STh1J.1 DOI: https://doi.org/10.1364/CLEO_SI.2020.STh1J.1
Liang, G. et al. Robust, efficient, micrometre-scale phase modulators at visible wavelengths. Nat. Photonics 15, 908–913 (2021). DOI: https://doi.org/10.1038/s41566-021-00891-y
Li, X., Deng, Q. & Zhou, Z. Low loss, high-speed single-mode half-disk resonator. Opt. Lett. 39, 3810–3813 (2014). DOI: https://doi.org/10.1364/OL.39.003810
Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017). DOI: https://doi.org/10.1364/OPTICA.4.000619
Payne, F. P. & Lacey, J. P. R. A theoretical analysis of scattering loss from planar optical waveguides. Opt. Quantum Electron. 26, 977–986 (1994). DOI: https://doi.org/10.1007/BF00708339
Gil-Molina, A. et al. Robust hybrid III-V/Si3N4 laser with kHz-linewidth and GHz-pulling range. In Conference on Lasers and Electro-Optics paper STu3M.4 (Optica Publishing Group, 2020); https://doi.org/10.1364/CLEO_SI.2020.STu3M.4 DOI: https://doi.org/10.1364/CLEO_SI.2020.STu3M.4
Kondratiev, N. M. et al. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express 25, 28167–28178 (2017). DOI: https://doi.org/10.1364/OE.25.028167
Galiev, R. R. et al. Spectrum collapse, narrow linewidth, and Bogatov effect in diode lasers locked to high-Q optical microresonators. Opt. Express 26, 30509–30522 (2018). DOI: https://doi.org/10.1364/OE.26.030509
Raja, A. S. et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun. 10, 680 (2019). DOI: https://doi.org/10.1038/s41467-019-08498-2
Li, B. et al. Reaching fiber-laser coherence in integrated photonics. Opt. Lett. 46, 5201–5204 (2021). DOI: https://doi.org/10.1364/OL.439720
Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021). DOI: https://doi.org/10.1126/science.abh2076
Snigirev, V. et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Preprint at https://arxiv.org/abs/2112.02036 (2022).
Lihachev, G. et al. Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nat. Commun. 13, 3522 (2022). DOI: https://doi.org/10.1038/s41467-022-30911-6
Guo, J. et al. Chip-based laser with 1-hertz integrated linewidth.
Adv. 8, eabp9006 (2022).
Shamim, M. H. M. et al. Investigation of self-injection locked visible laser diodes for high bit-rate visible light communication. IEEE Photonics J. 10, 7905611 (2018). DOI: https://doi.org/10.1109/JPHOT.2018.2849884
Shamim, M. H. M., Ng, T. K., Ooi, B. S. & Khan, M. Z. M. Tunable self-injection locked green laser diode. Opt. Lett. 43, 4931–4934 (2018). DOI: https://doi.org/10.1364/OL.43.004931
Hult, J., Burns, I. S. & Kaminski, C. F. Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers. Appl. Opt. 44, 3675–3685 (2005). DOI: https://doi.org/10.1364/AO.44.003675
Schkolnik, V., Fartmann, O. & Krutzik, M. An extended-cavity diode laser at 497 nm for laser cooling and trapping of neutral strontium. Laser Phys. 29, 035802 (2019). DOI: https://doi.org/10.1088/1555-6611/aaffc8
Li, C. et al. High-speed multi-pass tunable diode laser absorption spectrometer based on frequency-modulation spectroscopy. Opt. Express 26, 29330–29339 (2018). DOI: https://doi.org/10.1364/OE.26.029330
Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020). DOI: https://doi.org/10.1038/s41586-020-2239-3
Idjadi, M. H. & Aflatouni, F. Integrated Pound–Drever–Hall laser stabilization system in silicon. Nat. Commun. 8, 1209 (2017). DOI: https://doi.org/10.1038/s41467-017-01303-y
Spencer, D. T., Davenport, M. L., Komljenovic, T., Srinivasan, S. & Bowers, J. E. Stabilization of heterogeneous silicon lasers using Pound–Drever–Hall locking to Si3N4 ring resonators. Opt. Express 24, 13511–13517 (2016). DOI: https://doi.org/10.1364/OE.24.013511
Stéphan, G. M., Tam, T. T., Blin, S., Besnard, P. & Têtu, M. Laser line shape and spectral density of frequency noise. Phys. Rev. A 71, 043809 (2005). DOI: https://doi.org/10.1103/PhysRevA.71.043809
Kharas, D. et al. High-power (>300 mW) on-chip laser with passively aligned silicon-nitride waveguide DBR cavity. IEEE Photonics J. 12, 1504612 (2020). DOI: https://doi.org/10.1109/JPHOT.2020.3037834
Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018). DOI: https://doi.org/10.1364/OPTICA.5.000876
Nielsen, M. D., Folkenberg, J. R., Mortensen, N. A. & Bjarklev,
Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers. Opt. Express 12, 430–435 (2004). DOI: https://doi.org/10.1364/OPEX.12.000430
Hong, S. & Ali, S. Compact arrayed waveguide gratings for visible wavelengths based on silicon nitride. Ukr. J. Phys. Opt. 18, 239 (2017). DOI: https://doi.org/10.3116/16091833/18/4/239/2017
Andrews, J. R. Enhanced thermal stability of single longitudinal mode coupled cavity lasers. Appl. Phys. Lett. 47, 71–73 (1985). DOI: https://doi.org/10.1063/1.96255
Wieman, C. E. & Hollberg, L. Using diode lasers for atomic physics. Rev. Sci. Instrum. 62, 1–20 (1991). DOI: https://doi.org/10.1063/1.1142305
Doret, S. C. Simple, low-noise piezo driver with feed-forward for broad tuning of external cavity diode lasers. Rev. Sci. Instrum. 89, 023102 (2018). DOI: https://doi.org/10.1063/1.5009643
Dutta, S., Elliott, D. S. & Chen, Y. P. Mode-hop-free tuning over 135 GHz of external cavity diode lasers without antireflection coating. Appl. Phys. B 106, 629–633 (2012). DOI: https://doi.org/10.1007/s00340-011-4841-4
Spencer, D. T., Bauters, J. F., Heck, M. J. R. & Bowers, J. E. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica 1, 153–157 (2014). DOI: https://doi.org/10.1364/OPTICA.1.000153
Ji, X. et al. Exploiting ultralow loss multimode waveguides for broadband frequency combs. Laser Photonics Rev. 15, 2000353 (2021). DOI: https://doi.org/10.1002/lpor.202000353
Antman, Y. et al. High power on-chip integrated laser. Preprint at https://arxiv.org/abs/2207.06279 (2022).
Siddharth, A. et al. Near ultraviolet photonic integrated lasers based on silicon nitride. APL Photonics 7, 046108 (2022). DOI: https://doi.org/10.1063/5.0081660
Petermann, K. Laser Diode Modulation and Noise (Springer, 1988). DOI: https://doi.org/10.1007/978-94-009-2907-4
Published
Versions
- 19-06-2024 (2)
- 15-06-2024 (1)
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.