Vedic Sutras Mathematics with Application in Differentiation
DOI:
https://doi.org/10.32628/IJSRST2411475Keywords:
Vedic Mathematics, Derivatives, Integration, Simplification, Calculus, SutrasAbstract
Vedic Mathematics, rooted in ancient Indian texts, offers a unique and efficient approach to solving complex mathematical problems. This paper explores the application of Vedic principles in modern calculus, specifically focusing on derivatives and integration. By applying Vedic methods, such as the Urdhva Tiryak Sutra (vertical and crosswise multiplication) and Paravartya Sutra (transposition), we demonstrate how these can simplify and expedite processes in differentiation and integration. The study provides practical examples where these techniques are applied to common calculus problems, highlighting their potential to enhance problem-solving efficiency in higher mathematics.
Downloads
References
Bharati Krishna Tirthaji. (1992). Vedic Mathematics. Motilal Banarsi dass, New Delhi
Kandasamy, W. B. V., & Smarandache, F. (2009). Vedic Mathematics, 'Vedic' or 'Mathematics': A Fuzzy and Neutrosophic Analysis. Infinite Study.
Apostol, Tom M. (1974). Mathematical Analysis. Addison-Wesley.
Stewart, James. (2015). Calculus: Early Transcendentals. Cengage Learning.
Tiratha, B.K. (1965), Vedic Mathematics, Motilal Banarasi dass, New Delhi
Williams, R. (1965), Vedic Mathematics, Motilal Banarasi dass, New Delhi
Williams. K. R. (2001). Discover Vedic Mathematics. U.K.: Inspiration Books (Chapter 16).
Williams. K. R. (2013). The Crowning Gem. U.K.: Inspiration Books (Appendix 2)
Singh Y, Mandia H. On Some multidimensional fractional integral operators associated with generalized hyper geometric function, International Journal of Engineering Research and Applications (IJERA), ISSN: 2248- 9622, 2012;2:3.843-849.
Faraj T, Salim Sadek S, Smail J. Generalized Mittag-Leffler Function Associated with Weyl Fractional Calculus Operators, Hindawi Publishing Corporation Journal of Mathematics, Article ID 821762, 2013, 5. DOI: https://doi.org/10.1155/2013/821762
Kumar D, Singh J. New Fractional-Calculus Results Involving General Class of Multivariable Polynomials and Multivariable H-function, International Journal of Modern Mathematical Sciences 2013;7(1):55-64. ISSN:2166-286X
Ahmad F, Jain DK, Jain R. International Mathematical Forum 2013;8(25):1199-1204. HIKARI Ltd, www.m-hikari.com DOI: https://doi.org/10.12988/imf.2013.3483
Choi J, Agarwal P. Certain unified integrals associated with Bessel functions, Springer, Boundary Value Problems 2013, 95. doi:10.1186/1687-2770-2013-95. DOI: https://doi.org/10.1186/1687-2770-2013-95
Kumar V, N-fractional calculus of general class of functions and Fox’s H-Function. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci 2013;83(3):271-277. DOI: https://doi.org/10.1007/s40010-013-0084-6
Kumar A, et al. Hardware implementation of 16 × 16bit multiplier and square using Vedic mathematics. In: Proceedings of the International Conference on Signal, Image and Video Processing (ICSIVP); c2012 Jan. p. 309-314.
Acharya ER. Mathematics hundred years before and now. Hist Res. 2015;3(3):41-47.
Agarwal J, Matta V, Arya D. Design and implementation of FFT processor using Vedic multiplier with high throughput. Int J Emerg Technol Adv Eng. 2013;3(10):207-211.
Aggrawal S. Observations from Figuring by Shakuntala Devi [Internet]. Nov 2013 [cited 2024 Aug 2]. Available from: http://vedicmaths.org
Anju, Agrawal VK. FPGA implementation of low power and high-speed multiplier using Vedic mathematics. IOSR J VLSI Signal Process. 2013;2(5):51-57.
Babaji DKR. Solving system of linear equations using Parāvartya rule in Vedic mathematics [Internet]. Aug 2022 [cited 2024 Aug 2].
Bajaj R. Vedic mathematics, the problem solver. Black Rose Publications; c2015.
Agarwal J, Matta V, Arya D. Design and implementation of FFT processor using Vedic multiplier with high throughput. Int J Emerg Technol Adv Eng. 2013;3(10):207-211.
Aggrawal S. Observations from Figuring by Shakuntala Devi [Internet]. Nov 2013 [cited 2024 Aug 2]. Available from: http://vedicmaths.org
Anju, Agrawal VK. FPGA implementation of low power and high-speed multiplier using Vedic mathematics. IOSR J VLSI Signal Process. 2013;2(5):51-57. DOI: https://doi.org/10.9790/4200-0255157
Babaji DKR. Solving system of linear equations using Parāvartya rule in Vedic mathematics [Internet]. Aug 2022 [cited 2024 Aug 2]. Available from: www.vedicmaths.org
Agrawal K, et al. A review paper on multiplier algorithm for VLSI technology. In: Proceedings of the National Conference on Advanced Research Trends in Information and Computing Technologies (NCARTICT); c2018. Int J Sci Res Sci Eng Technol. 2018;4(2).
Kumar A, et al. Hardware implementation of 16 × 16-bit multiplier and square using Vedic mathematics. In: Proceedings of the International Conference on Signal, Image and Video Processing (ICSIVP); c2012 Jan. p. 309-314. Available from: http://www.researchgate.net/publication
Acharya ER. Mathematics hundred years before and now. Hist Res. 2015;3(3):41-47. DOI: https://doi.org/10.11648/j.history.20150303.11
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.