Impact of radiation dose and iterative reconstruction (IR) level on low-contrast detectability with 4-AFC approach
DOI:
https://doi.org/10.32628/IJSRST24116181Keywords:
Iterative reconstruction, radiation dose, low-contrast detectability, 4-AFC, image qualityAbstract
This study evaluated impacts of dose and iterative reconstruction (IR) level on low-contrast detectability in images of AAPM CT Performance phantom using a 4-alternative forced choice (4-AFC) approach. Five medical physicists detected low-contrast and small objects having size of 3.0 mm with the 4-AFC method. The tests were conducted at three different radiation doses (35.8 mGy, 54.1 mGy, and 72.1 mGy) at various IR levels from 0% to 100%. The total number of 4-AFC questions was 330 questions in which each observer answered the questions in 60 minutes. Percent correct answers increase as the IR level increases from 0 to 100%. The percent correct answers also increase as the dose increases from 34.8 mGy to 72.1 mGy. 100% correct answers start at IR levels of 70, 60, and 40% for doses of 34.8, 54.1, and 72.1 mGy, respectively. Conclusions: Increasing IR level and dose improve image quality, i.e., higher average percent correct answers. At IR levels around 50%, the average percent correct is close to the maximum (around 100%) for all radiation doses. An optimal combination of IR and radiation dose can produce good image quality with lower radiation dose.
Downloads
References
Kalender WA. Dose in x-ray computed tomography. Phys Med Biol. 2014;59(3):R129-R150. doi:10.1088/0031-9155/59/3/R129 DOI: https://doi.org/10.1088/0031-9155/59/3/R129
Omigbodun A, Vaishnav JY, Hsieh SS. Rapid measurement of the low-contrast detectability of CT scanners. Med Phys. 2021;48(3):1054-1063. doi:10.1002/mp.14657 DOI: https://doi.org/10.1002/mp.14657
Bellesi L, Wyttenbach R, Gaudino D, et al. A simple method for low-contrast detectability, image quality and dose optimisation with CT iterative reconstruction algorithms and model observers. Eur Radiol Exp. 2017;1(1):18. doi:10.1186/s41747-017-0023-4 DOI: https://doi.org/10.1186/s41747-017-0023-4
Verdun FR, Racine D, Ott JG, et al. Image quality in CT: From physical measurements to model observers. Phys Med. 2015;31(8):823-843. doi:10.1016/j.ejmp.2015.08.007 DOI: https://doi.org/10.1016/j.ejmp.2015.08.007
Seeram, Euclid. Computed Tomography: Physical Principles, Clinical Applications, and Quality Control, Fourth Edition. Australia: Elsevier; 2016.
Zhang G, Cockmartin L, Bosmans H. A Four-Alternative Forced Choice (4AFC) Software for Observer Performance Evaluation in Radiology. Medical Imaging. 2016;9787: 9787E-1-9787E-1. doi:10.1117/12.2216386 DOI: https://doi.org/10.1117/12.2216386
Schindera ST, Odedra D, Raza SA, et al. Iterative reconstruction algorithm for CT: can radiation dose be decreased while low-contrast detectability is preserved?. Radiology. 2013;269(2):511-518. doi:10.1148/radiol.13122349 DOI: https://doi.org/10.1148/radiol.13122349
Goldman LW. Principles of CT: radiation dose and image quality. J Nucl Med Technol. 2007;35(4):213-228. doi:10.2967/jnmt.106.037846 DOI: https://doi.org/10.2967/jnmt.106.037846
Setiawati E, Anam C, Widyasari W, Dougherty G. The quantitative effect of noise and object diameter on low-contrast detectability of AAPM CT performance phantom images. Atom Indonesia. 2023;49(1):61-66. doi: 10.55981/aij.2023.1228 DOI: https://doi.org/10.55981/aij.2023.1228
Anam C, Naufal A, Fujibuchi T, Matsubara K, Dougherty G. Automated development of the contrast-detail curve based on statistical low-contrast detectability in CT images. J Appl Clin Med Phys. 2022;23:e13719. doi: 10.1002/acm2.13719 DOI: https://doi.org/10.1002/acm2.13719
Singh S, Kalra MK, Gilman MD, et al. Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Radiology. 2011;259(2):565-573. doi:10.1148/radiol.11101450 DOI: https://doi.org/10.1148/radiol.11101450
Mohammadinejad P, Mileto A, Yu L, et al. CT Noise-Reduction Methods for Lower-Dose Scanning: Strengths and Weaknesses of Iterative Reconstruction Algorithms and New Techniques. Radiographics. 2021;41(5):1493-1508. doi:10.1148/rg.2021200196 DOI: https://doi.org/10.1148/rg.2021200196
Ramage A, Lopez Gutierrez B, Fischer K, et al. Filtered back projection vs. iterative reconstruction for CBCT: effects on image noise and processing time. Dentomaxillofac Radiol. 2023;52(8):20230109. doi:10.1259/dmfr.20230109
Yu L, Leng S, Chen L, Kofler JM, Carter RE, McCollough CH. Prediction of human observer performance in a 2-alternative forced choice low-contrast detection task using channelized Hotelling observer: impact of radiation dose and reconstruction algorithms. Med Phys. 2013;40(4):041908. doi:10.1118/1.4794498 DOI: https://doi.org/10.1118/1.4794498
AAPM. AAPM CT Performance Phantom. Computerized Imaging Reference System, Inc: Virginia; 2013.
Mokhtar A, Aabdelbary ZA, Sarhan A, Gad HM, Ahmed MT. Studies on The Radiation Dose, Image Quality and Low-contrast Detectability from MSCT Abdomen by Using Low Tube Voltage. Egyptian Journal of Radiology and Nuclear Medichine. 2021;52:269. doi:https://doi.org/10.1186/s43055-021-00613-y DOI: https://doi.org/10.1186/s43055-021-00613-y
Baskan O, Erol C, Ozbek H, Paksoy Y. Effect of radiation dose reduction on image quality in adult head CT with noise-suppressing reconstruction system with a 256 slice MDCT. J Appl Clin Med Phys. 2015;16(3):5360. doi:10.1120/jacmp.v16i3.5360
Rahmawati TN, Anam C, Setiawati E, Amilia R, Naufal A, Widhianto RW. Evaluation of contrast-to-noise ratio measurements using IndoQCT on images of the American association of physicists in medicine (AAPM) CT performance phantom. AIP Conf. Proc. 3210, 030007 (2024). doi: 10.1063/5.0228089 DOI: https://doi.org/10.1063/5.0228089
Prabsattroo T, Wachirasirikul K, Tansangworn P, Punikhom P, Sudchai W. The Dose Optimization and Evaluation of Image Quality in the Adult Brain Protocols of Multi-Slice Computed Tomography: A Phantom Study. J Imaging. 2023;9(12):264. Published 2023 Nov 28. doi:10.3390/jimaging9120264 DOI: https://doi.org/10.3390/jimaging9120264
Padole A, Ali Khawaja RD, Kalra MK, Singh S. CT radiation dose and iterative reconstruction techniques. AJR Am J Roentgenol. 2015;204(4):W384-W392. doi:10.2214/AJR.14.13241 DOI: https://doi.org/10.2214/AJR.14.13241
Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W. Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study [published correction appears in AJR Am J Roentgenol. 2009 Oct;193(4):1190]. AJR Am J Roentgenol. 2009;193(3):764-771. doi:10.2214/AJR.09.2397 DOI: https://doi.org/10.2214/AJR.09.2397
Euler A, Stieltjes B, Szucs-Farkas Z, et al. Impact of model-based iterative reconstruction on low-contrast lesion detection and image quality in abdominal CT: a 12-reader-based comparative phantom study with filtered back projection at different tube voltages. Eur Radiol. 2017;27(12):5252-5259. doi:10.1007/s00330-017-4825-9 DOI: https://doi.org/10.1007/s00330-017-4825-9
Husarik DB, Marin D, Samei E, et al. Radiation dose reduction in abdominal computed tomography during the late hepatic arterial phase using a model-based iterative reconstruction algorithm: how low can we go?. Invest Radiol. 2012;47(8):468-474. doi:10.1097/RLI.0b013e318251eafd DOI: https://doi.org/10.1097/RLI.0b013e318251eafd
Pourjabbar S, Singh S, Kulkarni N, et al. Dose reduction for chest CT: comparison of two iterative reconstruction techniques. Acta Radiol. 2015;56(6):688-695. doi:10.1177/0284185114537256 DOI: https://doi.org/10.1177/0284185114537256
Anam C, Haryanto F, Widita R, Arif I, Dougherty G. An investigation of spatial resolution and noise in reconstructed CT images using iterative reconstruction (IR) and filtered back-projection (FBP). J Phys: Conf. Ser. 2019;1127:012016. doi:10.1088/1742-6596/1127/1/012016 DOI: https://doi.org/10.1088/1742-6596/1127/1/012016
Baskan O, Erol C, Ozbek H, Paksoy Y. Effect of radiation dose reduction on image quality in adult head CT with noise-suppressing reconstruction system with a 256 slice MDCT. J Appl Clin Med Phys. 2015;16(3):5360. Published 2015 May 8. doi:10.1120/jacmp.v16i3.5360 DOI: https://doi.org/10.1120/jacmp.v16i3.5360
Boone JM, Hendee WR, McNitt-Gray MF, Seltzer SE. Radiation exposure from CT scans: how to close our knowledge gaps, monitor and safeguard exposure--proceedings and recommendations of the Radiation Dose Summit, sponsored by NIBIB, February 24-25, 2011. Radiology. 2012;265(2):544-554. doi:10.1148/radiol.12112201 DOI: https://doi.org/10.1148/radiol.12112201
Xu Y, Zhang TT, Hu ZH, et al. Effect of iterative reconstruction techniques on image quality in low radiation dose chest CT: a phantom study. Diagn Interv Radiol. 2019;25(6):442-450. doi:10.5152/dir.2019.18539 DOI: https://doi.org/10.5152/dir.2019.18539
Ramage A, Lopez Gutierrez B, Fischer K, et al. Filtered back projection vs. iterative reconstruction for CBCT: effects on image noise and processing time. Dentomaxillofac Radiol. 2023;52(8):20230109. doi:10.1259/dmfr.20230109 DOI: https://doi.org/10.1259/dmfr.20230109
Solomon J, Marin D, Roy Choudhury K, Patel B, Samei E. Effect of Radiation Dose Reduction and Reconstruction Algorithm on Image Noise, Contrast, Resolution, and Detectability of Subtle Hypoattenuating Liver Lesions at Multidetector CT: Filtered Back Projection versus a Commercial Model-based Iterative Reconstruction Algorithm. Radiology. 2017;284(3):777-787. doi:10.1148/radiol.2017161736 DOI: https://doi.org/10.1148/radiol.2017161736
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.