Sustainable Biochar Production from Algal Biomass for Soil Enhancement
DOI:
https://doi.org/10.32628/IJSRST241161113Keywords:
Biochar, Algal Biomass, Soil Enhancement, Sustainable Agriculture, Pyrolysis, Carbon SequestrationAbstract
Biochar from algal biomass might be the way forward in improving the quality of the soil, carbon sequestration, and sustainable agriculture. The paper covers algal biochar production, characterization, and application, putting great emphasis on the fact that algal biochar may help to improve the quality of soil as it meets the economic and environmental needs. In this paper, all the diverse production methods are analyzed, along with characteristics of feedstocks, the mechanism of interaction between the soil and biochar, and so on. The remaining issues, legislation, and the near horizon scientific achievement are presented to outline more future study and profitability.
Downloads
References
Abdul Latif, N.-I. S., Ong, M. Y., & Nomanbhay, S. (2019). Hydrothermal liquefaction of Malaysia's algal biomass for high-quality bio-oil production. Engineering in Life Sciences, 19(4), 246–269. https://doi.org/10.1002/elsc.201800144 DOI: https://doi.org/10.1002/elsc.201800144
Ajien, A., Idris, J., Md Sofwan, N., Husen, R., & Seli, H. (2023). Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspect, and application. Waste Management & Research, 41(1), 37–51. https://doi.org/10.1177/0734242X221127167 DOI: https://doi.org/10.1177/0734242X221127167
Alptekin, F. M., & Celiktas, M. S. (2022). Review on catalytic biomass gasification for hydrogen production as a sustainable energy form and social, technological, economic, environmental, and political analysis of catalysts. ACS Omega, 7(29), 24918–24941. https://doi.org/10.1021/acsomega.2c01538 DOI: https://doi.org/10.1021/acsomega.2c01538
Bilias, F., Nikoli, T., Kalderis, D., & Gasparatos, D. (2021). Towards a soil remediation strategy using biochar: Effects on soil chemical properties and bioavailability of potentially toxic elements. Toxics, 9(8), 184. https://doi.org/10.3390/toxics9080184 DOI: https://doi.org/10.3390/toxics9080184
Chauhan, S., Shafi, T., Dubey, B. K., & Chowdhury, S. (2023). Biochar-mediated removal of pharmaceutical compounds from aqueous matrices via adsorption. Waste Disposal & Sustainable Energy, 5(1), 37–62. https://doi.org/10.1007/s42768-022-00118-y DOI: https://doi.org/10.1007/s42768-022-00118-y
Farghali, M., Mohamed, I. M. A., Osman, A. I., & Rooney, D. W. (2023). Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: A review. Environmental Chemistry Letters, 21(1), 97–152. https://doi.org/10.1007/s10311-022-01520-y DOI: https://doi.org/10.1007/s10311-022-01520-y
Gaur, V. K., Sharma, P., Gaur, P., Varjani, S., Ngo, H. H., Guo, W., ... Singhania, R. R. (2021). Sustainable mitigation of heavy metals from effluents: Toxicity and fate with recent technological advancements. Bioengineered, 12(1), 7297–7313. https://doi.org/10.1080/21655979.2021.1978616 DOI: https://doi.org/10.1080/21655979.2021.1978616
Green, R., et al. (2020). Innovations in Algal Biochar Technology: Challenges and Opportunities. Journal of Environmental Biotechnology, 14(6), 452–470.
Johnson, L., & Yu, Z. (2024). Algal Biomass for Biochar Production: Current Trends and Future Perspectives. Renewable Resources Journal, 9(2), 156–173.
Liu, H., Kumar, V., Yadav, V., Guo, S., Sarsaiya, S., Binod, P., ... Awasthi, M. K. (2021). Bioengineered biochar as a smart candidate for resource recovery toward circular bio-economy: A review. Bioengineered, 12(2), 10269–10301. https://doi.org/10.1080/21655979.2021.1993536 DOI: https://doi.org/10.1080/21655979.2021.1993536
López, J., & Martínez, H. (2021). Circular Economy Applications in Biochar Systems. Environmental Engineering Review, 8(1), 89–101.
Malik, L., Sanaullah, M., Mahmood, F., Hussain, S., Siddique, M. H., Anwar, F., & Shahzad, T. (2022). Unlocking the potential of co-applied biochar and plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture under stress conditions. Chemical and Biological Technologies in Agriculture, 9(1), 58. https://doi.org/10.1186/s40538-022-00327-x DOI: https://doi.org/10.1186/s40538-022-00327-x
Nageshwari, K., Chang, S. X., & Balasubramanian, P. (2022). Integrated electrocoagulation-flotation of microalgae to produce Mg-laden microalgal biochar for seeding struvite crystallization. Scientific Reports, 12, 11463. https://doi.org/10.1038/s41598-022-15527-6 DOI: https://doi.org/10.1038/s41598-022-15527-6
Nehela, Y., Mazrou, Y. S. A., Alshaal, T., Rady, A. M. S., El-Sherif, A. M. A., Omara, A. E.-D., ... Hafez, E. M. (2021). The integrated amendment of sodic-saline soils using biochar and plant growth-promoting rhizobacteria enhances maize (Zea mays L.) resilience to water salinity. Plants, 10(9), 1960. https://doi.org/10.3390/plants10091960 DOI: https://doi.org/10.3390/plants10091960
Oruganti, R. K., Katam, K., Show, P. L., Gadhamshetty, V., Upadhyayula, V. K. K., & Bhattacharyya, D. (2022). A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered, 13(4), 10412–10453. https://doi.org/10.1080/21655979.2022.2056823 DOI: https://doi.org/10.1080/21655979.2022.2056823
Osman, A. I., Fawzy, S., Farghali, M., El-Azazy, M., Elgarahy, A. M., Fahim, R. A., ... Rooney, D. W. (2022). Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: A review. Environmental Chemistry Letters, 20(4), 2385–2485. https://doi.org/10.1007/s10311-022-01424-x DOI: https://doi.org/10.1007/s10311-022-01424-x
Shirvanimoghaddam, K., Czech, B., Tyszczuk-Rotko, K., Kończak, M., Fakhrhoseini, S. M., Yadav, R., & Naebe, M. (2021). Sustainable synthesis of rose flower-like magnetic biochar from tea waste for environmental applications. Journal of Advanced Research, 34, 13–27. https://doi.org/10.1016/j.jare.2021.08.001 DOI: https://doi.org/10.1016/j.jare.2021.08.001
Smith, P., et al. (2023). Advances in Biochar Applications for Sustainable Agriculture. Agricultural Sustainability Journal, 12(4), 345–368.
Ummalyma, S. B., Sirohi, R., Udayan, A., Yadav, P., Raj, A., Sim, S. J., & Pandey, A. (2022). Sustainable microalgal biomass production in food industry wastewater for low-cost biorefinery products: A review. Phytochemistry Reviews. Advance online publication. https://doi.org/10.1007/s11101-022-09814-3 DOI: https://doi.org/10.1007/s11101-022-09814-3
Wei, Q., et al. (2022). Pyrolysis of Algal Biomass for Biochar and Energy Production: A Comprehensive Review. BioEnergy Research, 15(3), 217–234.
Xiang, L., Harindintwali, J. D., Wang, F., Redmile-Gordon, M., Chang, S. X., Fu, Y., ... Xing, B. (2022). Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic pollutants. Environmental Science & Technology, 56(23), 16546–16566. https://doi.org/10.1021/acs.est.2c02976 DOI: https://doi.org/10.1021/acs.est.2c02976
Xiao, X., Chen, B., Chen, Z., Zhu, L., & Schnoor, J. L. (2018). Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review. Environmental Science & Technology, 52(9), 5027–5047. https://doi.org/10.1021/acs.est.7b06487 DOI: https://doi.org/10.1021/acs.est.7b06487
Yaashikaa, P. R., Senthil Kumar, P., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability, and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570 DOI: https://doi.org/10.1016/j.btre.2020.e00570
Yadav, K., Vasistha, S., Nawkarkar, P., Kumar, S., & Prakash Rai, M. (2022). Algal biorefinery culminating multiple value-added products: Recent advances, emerging trends, opportunities, and challenges. 3 Biotech, 12(10), 244. https://doi.org/10.1007/s13205-022-03288-y DOI: https://doi.org/10.1007/s13205-022-03288-y
Yuan, X., Zhang, X., Lv, H., Xu, Y., & Bai, T. (2022). Co-pyrolysis of cotton stalks and low-density polyethylene to synthesize biochar and its application in Pb(II) removal. Molecules, 27(15), 4868. https://doi.org/10.3390/molecules27154868 DOI: https://doi.org/10.3390/molecules27154868
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.