Silver Nanoparticle-Infused Bone Cement: Innovations in Orthopedic Biomaterials

Authors

  • Soumitra Mandal Assistant Professor, Department of Chemistry, Fakir Chand College, Diamond Harbour- 743331, South 24- Parganas, West Bengal, India Author

DOI:

https://doi.org/10.32628/IJSRST241161134

Keywords:

Silver nanoparticles, Bone cement, Orthopedic biomaterials, Antimicrobial properties, Biocompatibility

Abstract

The integration of silver nanoparticles (AgNPs) into bone cement has emerged as a cutting-edge approach to enhance the functional properties of orthopedic biomaterials. Silver nanoparticles, known for their broad-spectrum antimicrobial properties, provide an innovative solution to combat implant-associated infections. This review delves into the synthesis methods, including in situ formation and physical blending, and examines the performance of AgNP-infused bone cement in terms of antimicrobial efficacy, mechanical strength, and biocompatibility. By addressing the challenges such as cytotoxicity and regulatory considerations, this analysis highlights its transformative potential in reducing infection rates, enhancing implant longevity, and ultimately improving patient outcomes in orthopedic surgeries.

Downloads

Download data is not yet available.

References

F.-C. Chang et al., “The effects of bone-substitute augmentation on treatment of osteoporotic intertrochanteric fractures,” Biomed. J., vol. 44, no. 6, pp. 717–726, Dec. 2021, doi: 10.1016/j.bj.2020.05.013. DOI: https://doi.org/10.1016/j.bj.2020.05.013

X. Chen, J. Zhou, Y. Qian, and L. Zhao, “Antibacterial coatings on orthopedic implants,” Mater. Today Bio, vol. 19, p. 100586, Apr. 2023, doi: 10.1016/j.mtbio.2023.100586. DOI: https://doi.org/10.1016/j.mtbio.2023.100586

E. O. Kuris, C. Osorio, G. M. Anderson, J. A. Younghein, C. L. McDonald, and A. H. Daniels, “Utilization of Antibiotic Bone Cement in Spine Surgery: Pearls, Techniques, and Case Review,” Orthop. Rev., vol. 15, Dec. 2023, doi: 10.52965/001c.90618. DOI: https://doi.org/10.52965/001c.90618

P. Wang, Y. Gong, G. Zhou, W. Ren, and X. Wang, “Biodegradable Implants for Internal Fixation of Fractures and Accelerated Bone Regeneration,” ACS Omega, vol. 8, no. 31, pp. 27920–27931, Aug. 2023, doi: 10.1021/acsomega.3c02727. DOI: https://doi.org/10.1021/acsomega.3c02727

Z. Gao et al., “A Review on Non-Leaching Antibacterial Bone Cement for Orthopaedic Surgery: From Past to Current Insights,” Aug. 18, 2023. doi: 10.20944/preprints202308.1315.v1. DOI: https://doi.org/10.20944/preprints202308.1315.v1

L. Kehribar, M. Aydın, H. S. Coşkun, and S. Surucu, “Silver Nanoparticles Enhance the Antibacterial Effect of Antibiotic-Loaded Bone Cement,” Cureus, Feb. 2023, doi: 10.7759/cureus.34992. DOI: https://doi.org/10.7759/cureus.34992

H. Lin et al., “A review on the promising antibacterial agents in bone cement–From past to current insights,” J. Orthop. Surg., vol. 19, no. 1, p. 673, Oct. 2024, doi: 10.1186/s13018-024-05143-7. DOI: https://doi.org/10.1186/s13018-024-05143-7

P. Prokopovich, M. Köbrick, E. Brousseau, and S. Perni, “Potent antimicrobial activity of bone cement encapsulating silver nanoparticles capped with oleic acid,” J. Biomed. Mater. Res. B Appl. Biomater., vol. 103, no. 2, pp. 273–281, Feb. 2015, doi: 10.1002/jbm.b.33196. DOI: https://doi.org/10.1002/jbm.b.33196

Z. Wang et al., “Antibacterial Silver-Nanoparticle-Coated Stainless Steel Nails for Implant-Associated Osteomyelitis,” ACS Appl. Nano Mater., vol. 7, no. 12, pp. 14829–14843, Jun. 2024, doi: 10.1021/acsanm.4c02884. DOI: https://doi.org/10.1021/acsanm.4c02884

A.-C. Burdușel, O. Gherasim, A. M. Grumezescu, L. Mogoantă, A. Ficai, and E. Andronescu, “Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview,” Nanomaterials, vol. 8, no. 9, p. 681, Aug. 2018, doi: 10.3390/nano8090681. DOI: https://doi.org/10.3390/nano8090681

J. Slane, J. Vivanco, W. Rose, H.-L. Ploeg, and M. Squire, “Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles,” Mater. Sci. Eng. C, vol. 48, pp. 188–196, Mar. 2015, doi: 10.1016/j.msec.2014.11.068. DOI: https://doi.org/10.1016/j.msec.2014.11.068

T. Bruna, F. Maldonado-Bravo, P. Jara, and N. Caro, “Silver Nanoparticles and Their Antibacterial Applications,” Int. J. Mol. Sci., vol. 22, no. 13, p. 7202, Jul. 2021, doi: 10.3390/ijms22137202. DOI: https://doi.org/10.3390/ijms22137202

H. Li and H. Xu, “Mechanisms of bacterial resistance to environmental silver and antimicrobial strategies for silver: A review,” Environ. Res., vol. 248, p. 118313, May 2024, doi: 10.1016/j.envres.2024.118313. DOI: https://doi.org/10.1016/j.envres.2024.118313

E. M. Mateo and M. Jiménez, “Silver Nanoparticle-Based Therapy: Can It Be Useful to Combat Multi-Drug Resistant Bacteria?,” Antibiotics, vol. 11, no. 9, p. 1205, Sep. 2022, doi: 10.3390/antibiotics11091205. DOI: https://doi.org/10.3390/antibiotics11091205

M. Fahim, A. Shahzaib, N. Nishat, A. Jahan, T. A. Bhat, and A. Inam, “Green synthesis of silver nanoparticles: A comprehensive review of methods, influencing factors, and applications,” JCIS Open, vol. 16, p. 100125, Dec. 2024, doi: 10.1016/j.jciso.2024.100125. DOI: https://doi.org/10.1016/j.jciso.2024.100125

H. Jiang, L. Li, Z. Li, and X. Chu, “Metal-based nanoparticles in antibacterial application in biomedical field: Current development and potential mechanisms,” Biomed. Microdevices, vol. 26, no. 1, p. 12, Mar. 2024, doi: 10.1007/s10544-023-00686-8. DOI: https://doi.org/10.1007/s10544-023-00686-8

L. Xu, Y.-Y. Wang, J. Huang, C.-Y. Chen, Z.-X. Wang, and H. Xie, “Silver nanoparticles: Synthesis, medical applications and biosafety,” Theranostics, vol. 10, no. 20, pp. 8996–9031, 2020, doi: 10.7150/thno.45413. DOI: https://doi.org/10.7150/thno.45413

E. O. Mikhailova, “Green Silver Nanoparticles: An Antibacterial Mechanism,” Antibiotics, vol. 14, no. 1, p. 5, Dec. 2024, doi: 10.3390/antibiotics14010005. DOI: https://doi.org/10.3390/antibiotics14010005

Y. K. Mohanta, K. Biswas, S. K. Jena, A. Hashem, E. F. Abd_Allah, and T. K. Mohanta, “Anti-biofilm and Antibacterial Activities of Silver Nanoparticles Synthesized by the Reducing Activity of Phytoconstituents Present in the Indian Medicinal Plants,” Front. Microbiol., vol. 11, p. 1143, Jun. 2020, doi: 10.3389/fmicb.2020.01143. DOI: https://doi.org/10.3389/fmicb.2020.01143

N. S. Swidan, Y. A. Hashem, W. F. Elkhatib, and M. A. Yassien, “Antibiofilm activity of green synthesized silver nanoparticles against biofilm associated enterococcal urinary pathogens,” Sci. Rep., vol. 12, no. 1, p. 3869, Mar. 2022, doi: 10.1038/s41598-022-07831-y. DOI: https://doi.org/10.1038/s41598-022-07831-y

W. Liang et al., “Current developments and future perspectives of nanotechnology in orthopedic implants: an updated review,” Front. Bioeng. Biotechnol., vol. 12, p. 1342340, Mar. 2024, doi: 10.3389/fbioe.2024.1342340. DOI: https://doi.org/10.3389/fbioe.2024.1342340

M. Arora, E. K. Chan, S. Gupta, and A. D. Diwan, “Polymethylmethacrylate bone cements and additives: A review of the literature,” World J. Orthop., vol. 4, no. 2, pp. 67–74, Apr. 2013, doi: 10.5312/wjo.v4.i2.67. DOI: https://doi.org/10.5312/wjo.v4.i2.67

S. A. Brennan, C. Ní Fhoghlú, B. M. Devitt, F. J. O’Mahony, D. Brabazon, and A. Walsh, “Silver nanoparticles and their orthopaedic applications,” Bone Jt. J., vol. 97-B, no. 5, pp. 582–589, May 2015, doi: 10.1302/0301-620X.97B5.33336.

M. Jeyaraman et al., “Silver nanoparticle technology in orthopaedic infections,” World J. Orthop., vol. 14, no. 9, pp. 662–668, Sep. 2023, doi: 10.5312/wjo.v14.i9.662. DOI: https://doi.org/10.5312/wjo.v14.i9.662

A. Bistolfi, R. Ferracini, C. Albanese, E. Vernè, and M. Miola, “PMMA-Based Bone Cements and the Problem of Joint Arthroplasty Infections: Status and New Perspectives,” Materials, vol. 12, no. 23, p. 4002, Dec. 2019, doi: 10.3390/ma12234002. DOI: https://doi.org/10.3390/ma12234002

S. Soleymani Eil Bakhtiari et al., “Polymethyl Methacrylate-Based Bone Cements Containing Carbon Nanotubes and Graphene Oxide: An Overview of Physical, Mechanical, and Biological Properties,” Polymers, vol. 12, no. 7, p. 1469, Jun. 2020, doi: 10.3390/polym12071469. DOI: https://doi.org/10.3390/polym12071469

B. Świeczko-Żurek, A. Zieliński, D. Bociąga, K. Rosińska, and G. Gajowiec, “Influence of Different Nanometals Implemented in PMMA Bone Cement on Biological and Mechanical Properties,” Nanomaterials, vol. 12, no. 5, p. 732, Feb. 2022, doi: 10.3390/nano12050732. DOI: https://doi.org/10.3390/nano12050732

K. Galant et al., “Silver Nanoparticles (AgNPs) Incorporation into Polymethyl Methacrylate (PMMA) for Dental Appliance Fabrication: A Systematic Review and Meta-Analysis of Mechanical Properties,” Int. J. Mol. Sci., vol. 25, no. 23, p. 12645, Nov. 2024, doi: 10.3390/ijms252312645. DOI: https://doi.org/10.3390/ijms252312645

M. Wekwejt et al., “Nanosilver-loaded PMMA bone cement doped with different bioactive glasses – evaluation of cytocompatibility, antibacterial activity, and mechanical properties,” Biomater. Sci., vol. 9, no. 8, pp. 3112–3126, 2021, doi: 10.1039/D1BM00079A. DOI: https://doi.org/10.1039/D1BM00079A

S. Castiglioni, A. Cazzaniga, L. Locatelli, and J. Maier, “Silver Nanoparticles in Orthopedic Applications: New Insights on Their Effects on Osteogenic Cells,” Nanomaterials, vol. 7, no. 6, p. 124, May 2017, doi: 10.3390/nano7060124. DOI: https://doi.org/10.3390/nano7060124

Y. Qing et al., “Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies,” Int. J. Nanomedicine, vol. Volume 13, pp. 3311–3327, Jun. 2018, doi: 10.2147/IJN.S165125. DOI: https://doi.org/10.2147/IJN.S165125

C. Quintero-Quiroz et al., “Synthesis and characterization of a silver nanoparticle-containing polymer composite with antimicrobial abilities for application in prosthetic and orthotic devices,” Biomater. Res., vol. 24, no. 1, p. 13, Mar. 2020, doi: 10.1186/s40824-020-00191-6. DOI: https://doi.org/10.1186/s40824-020-00191-6

L. Actis, A. Srinivasan, J. L. Lopez-Ribot, A. K. Ramasubramanian, and J. L. Ong, “Effect of silver nanoparticle geometry on methicillin susceptible and resistant Staphylococcus aureus, and osteoblast viability,” J. Mater. Sci. Mater. Med., vol. 26, no. 7, p. 215, Jul. 2015, doi: 10.1007/s10856-015-5538-8. DOI: https://doi.org/10.1007/s10856-015-5538-8

C. E. Albers, W. Hofstetter, K. A. Siebenrock, R. Landmann, and F. M. Klenke, “In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations,” Nanotoxicology, vol. 7, no. 1, pp. 30–36, Feb. 2013, doi: 10.3109/17435390.2011.626538. DOI: https://doi.org/10.3109/17435390.2011.626538

K. P. Steckiewicz et al., “Shape-Depended Biological Properties of Ag3 PO4 Microparticles: Evaluation of Antimicrobial Properties and Cytotoxicity in In Vitro Model—Safety Assessment of Potential Clinical Usage,” Oxid. Med. Cell. Longev., vol. 2019, pp. 1–19, Nov. 2019, doi: 10.1155/2019/6740325. DOI: https://doi.org/10.1155/2019/6740325

H. R. Bakhsheshi-Rad et al., “Co-incorporation of graphene oxide/silver nanoparticle into poly-L-lactic acid fibrous: A route toward the development of cytocompatible and antibacterial coating layer on magnesium implants,” Mater. Sci. Eng. C, vol. 111, p. 110812, Jun. 2020, doi: 10.1016/j.msec.2020.110812. DOI: https://doi.org/10.1016/j.msec.2020.110812

C. Chowdeswarihalli Narayanappa, B. Nagappan, P. Vignesh, and A. Thirugnanasambandam, “Enhancing biocompatibility and antibacterial activity of Mg/HA (magnesium-hydroxyapatite) composites with silver nanoparticles for orthopedic implant applications,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., p. 09544089241281544, Sep. 2024, doi: 10.1177/09544089241281544. DOI: https://doi.org/10.1177/09544089241281544

A. Damle, R. Sundaresan, J. M. Rajwade, P. Srivastava, and A. Naik, “A concise review on implications of silver nanoparticles in bone tissue engineering,” Biomater. Adv., vol. 141, p. 213099, Oct. 2022, doi: 10.1016/j.bioadv.2022.213099. DOI: https://doi.org/10.1016/j.bioadv.2022.213099

Y. Kirmanidou et al., “Assessment of cytotoxicity and antibacterial effects of silver nanoparticle-doped titanium alloy surfaces,” Dent. Mater., vol. 35, no. 9, pp. e220–e233, Sep. 2019, doi: 10.1016/j.dental.2019.06.003. DOI: https://doi.org/10.1016/j.dental.2019.06.003

T. Thirugnanasambandan and S. M. K. Thiagamani, “Cytotoxicity and biocompatibility of the bionanocomposites in the orthopedic implants and wound dressing applications,” in Biocomposites for Industrial Applications, Elsevier, 2024, pp. 125–146. doi: 10.1016/B978-0-323-91866-4.00009-3. DOI: https://doi.org/10.1016/B978-0-323-91866-4.00009-3

A. De Mori et al., “Antibacterial PMMA Composite Cements with Tunable Thermal and Mechanical Properties,” ACS Omega, vol. 4, no. 22, pp. 19664–19675, Nov. 2019, doi: 10.1021/acsomega.9b02290. DOI: https://doi.org/10.1021/acsomega.9b02290

O. Lyutakov et al., “One-step preparation of antimicrobial silver nanoparticles in polymer matrix,” J. Nanoparticle Res., vol. 17, no. 3, p. 120, Mar. 2015, doi: 10.1007/s11051-015-2935-3. DOI: https://doi.org/10.1007/s11051-015-2935-3

S. K. Mallineni et al., “Silver Nanoparticles in Dental Applications: A Descriptive Review,” Bioengineering, vol. 10, no. 3, p. 327, Mar. 2023, doi: 10.3390/bioengineering10030327. DOI: https://doi.org/10.3390/bioengineering10030327

A. Salama, R. E. Abouzeid, M. E. Owda, I. Cruz-Maya, and V. Guarino, “Cellulose–Silver Composites Materials: Preparation and Applications,” Biomolecules, vol. 11, no. 11, p. 1684, Nov. 2021, doi: 10.3390/biom11111684. DOI: https://doi.org/10.3390/biom11111684

D. Sharma, S. Kumar, Y. Garg, S. Chopra, and A. Bhatia, “Nanotechnology in Orthodontics: Unveiling Pain Mechanisms, Innovations,and Future Prospects of Nanomaterials in Drug Delivery,” Curr. Pharm. Des., vol. 30, no. 19, pp. 1490–1506, May 2024, doi: 10.2174/0113816128298451240404084605. DOI: https://doi.org/10.2174/0113816128298451240404084605

E. Alwan Erhim, M. A. Abbood, and H. T. Halbos, “Assessment of surface hardness and impact strength of denture base resins reinforced with silver–titanium dioxide and silver–zirconium dioxide nanoparticles: In vitro study,” Open Eng., vol. 14, no. 1, p. 20240064, Oct. 2024, doi: 10.1515/eng-2024-0064. DOI: https://doi.org/10.1515/eng-2024-0064

M. N. Siddiqui, H. H. Redhwi, E. Vakalopoulou, I. Tsagkalias, M. D. Ioannidou, and D. S. Achilias, “Synthesis, characterization and reaction kinetics of PMMA/silver nanocomposites prepared via in situ radical polymerization,” Eur. Polym. J., vol. 72, pp. 256–269, Nov. 2015, doi: 10.1016/j.eurpolymj.2015.09.019. DOI: https://doi.org/10.1016/j.eurpolymj.2015.09.019

A. M. Díez-Pascual, “PMMA-Based Nanocomposites for Odontology Applications: A State-of-the-Art,” Int. J. Mol. Sci., vol. 23, no. 18, p. 10288, Sep. 2022, doi: 10.3390/ijms231810288. DOI: https://doi.org/10.3390/ijms231810288

D. B. Hazer, M. Sakar, Y. Dere, G. Altinkanat, M. I. Ziyal, and B. Hazer, “Antimicrobial Effect of Polymer-Based Silver Nanoparticle Coated Pedicle Screws: Experimental Research on Biofilm Inhibition in Rabbits,” SPINE, vol. 41, no. 6, pp. E323–E329, Mar. 2016, doi: 10.1097/BRS.0000000000001223. DOI: https://doi.org/10.1097/BRS.0000000000001223

H. Qin et al., “In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium,” Biomaterials, vol. 35, no. 33, pp. 9114–9125, Nov. 2014, doi: 10.1016/j.biomaterials.2014.07.040. DOI: https://doi.org/10.1016/j.biomaterials.2014.07.040

I. A. J. Van Hengel et al., “Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus,” Biomaterials, vol. 140, pp. 1–15, Sep. 2017, doi: 10.1016/j.biomaterials.2017.02.030. DOI: https://doi.org/10.1016/j.biomaterials.2017.02.030

A. R. Alnsour et al., “The Pharmaceutical Role of Silver Nanoparticles in Treating Multidrug-Resistant Bacteria and Biofilms,” Curr. Nanosci., vol. 20, no. 4, pp. 471–494, Jul. 2024, doi: 10.2174/1573413719666230525093326. DOI: https://doi.org/10.2174/1573413719666230525093326

A. Balestri, J. Cardellini, and D. Berti, “Gold and silver nanoparticles as tools to combat multidrug-resistant pathogens,” Curr. Opin. Colloid Interface Sci., vol. 66, p. 101710, Aug. 2023, doi: 10.1016/j.cocis.2023.101710. DOI: https://doi.org/10.1016/j.cocis.2023.101710

M. El-Telbany and A. El-Sharaki, “Antibacterial and anti-biofilm activity of silver nanoparticles on multi-drug resistance pseudomonas aeruginosa isolated from dental-implant,” J. Oral Biol. Craniofacial Res., vol. 12, no. 1, pp. 199–203, Jan. 2022, doi: 10.1016/j.jobcr.2021.12.002. DOI: https://doi.org/10.1016/j.jobcr.2021.12.002

P. R. More, S. Pandit, A. D. Filippis, G. Franci, I. Mijakovic, and M. Galdiero, “Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens,” Microorganisms, vol. 11, no. 2, p. 369, Feb. 2023, doi: 10.3390/microorganisms11020369. DOI: https://doi.org/10.3390/microorganisms11020369

N. Xie, “Synthesis and antibacterial effects of silver nanoparticles (AgNPs) against multi-drug resistant bacteria,” Biomed. Mater. Eng., vol. 35, no. 5, pp. 451–463, Sep. 2024, doi: 10.3233/BME-240034. DOI: https://doi.org/10.3233/BME-240034

F. Firouz, F. Amiri, S. Khazaei, F. Vafaee, A. Farmany, and M. Farhadian, “Effect of Adding Silver Nanoparticles on the Flexural Strength of Feldspathic Porcelain,” J. Contemp. Dent. Pract., vol. 23, no. 8, pp. 793–800, Nov. 2022, doi: 10.5005/jp-journals-10024-3393. DOI: https://doi.org/10.5005/jp-journals-10024-3393

G. Mahendrarajah, E. Kandare, and A. A. Khatibi, “Enhancing the Fracture Toughness Properties by Introducing Anchored Nano-Architectures at the Metal–FRP Composite Interface,” J. Compos. Sci., vol. 3, no. 1, p. 17, Feb. 2019, doi: 10.3390/jcs3010017. DOI: https://doi.org/10.3390/jcs3010017

S. K. Al-Janabi, M. H. Al-Maamori, and A. J. Braihi, “Developing of PMMA Bone Cement Performance by Modified TiO2 NPs,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1094, no. 1, p. 012150, Feb. 2021, doi: 10.1088/1757-899X/1094/1/012150. DOI: https://doi.org/10.1088/1757-899X/1094/1/012150

T. Ghaffari and F. Hamedi-rad, “Effect of Silver Nano-particles on Tensile Strength of Acrylic Resins,” J. Dent. Res. Dent. Clin. Dent. Prospects, vol. 9, no. 1, pp. 40–43, Mar. 2015, doi: 10.15171/joddd.2015.008. DOI: https://doi.org/10.15171/joddd.2015.008

H. T. Owoyemi, B. O. Adewuyi, I. O. Oladele, S. O. Falana, S. A. Oyegunna, and J. O. Ajileye, “Silver nanoparticles reinforced polyethersulfone composite for sustainable application,” Discov. Polym., vol. 1, no. 1, p. 4, Sep. 2024, doi: 10.1007/s44347-024-00007-z. DOI: https://doi.org/10.1007/s44347-024-00007-z

A. Akturk, M. Erol Taygun, and G. Goller, “Optimization of the electrospinning process variables for gelatin/silver nanoparticles/bioactive glass nanocomposites for bone tissue engineering,” Polym. Compos., vol. 41, no. 6, pp. 2411–2425, Jun. 2020, doi: 10.1002/pc.25545. DOI: https://doi.org/10.1002/pc.25545

W. Frączek, A. Kotela, I. Kotela, and M. Grodzik, “Nanostructures in Orthopedics: Advancing Diagnostics, Targeted Therapies, and Tissue Regeneration,” Materials, vol. 17, no. 24, p. 6162, Dec. 2024, doi: 10.3390/ma17246162. DOI: https://doi.org/10.3390/ma17246162

M. Sycińska-Dziarnowska, L. Szyszka-Sommerfeld, M. Ziąbka, G. Spagnuolo, and K. Woźniak, “Antimicrobial efficacy and bonding properties of orthodontic bonding systems enhanced with silver nanoparticles: a systematic review with meta-analysis,” BMC Oral Health, vol. 24, no. 1, p. 1342, Nov. 2024, doi: 10.1186/s12903-024-05127-3. DOI: https://doi.org/10.1186/s12903-024-05127-3

H. Wang et al., “Performance optimization of biomimetic ant-nest silver nanoparticle coatings for antibacterial and osseointegration of implant surfaces,” Biomater. Adv., vol. 149, p. 213394, Jun. 2023, doi: 10.1016/j.bioadv.2023.213394. DOI: https://doi.org/10.1016/j.bioadv.2023.213394

H. J. Haugen, S. Makhtari, S. Ahmadi, and B. Hussain, “The Antibacterial and Cytotoxic Effects of Silver Nanoparticles Coated Titanium Implants: A Narrative Review,” Materials, vol. 15, no. 14, p. 5025, Jul. 2022, doi: 10.3390/ma15145025. DOI: https://doi.org/10.3390/ma15145025

Sanna Hadi and Othman Omar, “Antibacterial effect and biocompatibility of silver nanoparticle-coated boneallograft substitutes,” Cell. Mol. Biol., vol. 70, no. 3, pp. 67–77, Mar. 2024, doi: 10.14715/cmb/2024.70.3.10. DOI: https://doi.org/10.14715/cmb/2024.70.3.10

M. U. A. Khan et al., “Synthesis and Characterization of Silver-Coated Polymeric Scaffolds for Bone Tissue Engineering: Antibacterial and In Vitro Evaluation of Cytotoxicity and Biocompatibility,” ACS Omega, vol. 6, no. 6, pp. 4335–4346, Feb. 2021, doi: 10.1021/acsomega.0c05596. DOI: https://doi.org/10.1021/acsomega.0c05596

C.-M. Xie et al., “Silver Nanoparticles and Growth Factors Incorporated Hydroxyapatite Coatings on Metallic Implant Surfaces for Enhancement of Osteoinductivity and Antibacterial Properties,” ACS Appl. Mater. Interfaces, vol. 6, no. 11, pp. 8580–8589, Jun. 2014, doi: 10.1021/am501428e. DOI: https://doi.org/10.1021/am501428e

D.-W. Han, Y. I. Woo, M. H. Lee, J. H. Lee, J. Lee, and J.-C. Park, “In-Vivo and In-Vitro Biocompatibility Evaluations of Silver Nanoparticles with Antimicrobial Activity,” J. Nanosci. Nanotechnol., vol. 12, no. 7, pp. 5205–5209, Jul. 2012, doi: 10.1166/jnn.2012.6367. DOI: https://doi.org/10.1166/jnn.2012.6367

T. Morimoto et al., “Development of Silver-Containing Hydroxyapatite-Coated Antimicrobial Implants for Orthopaedic and Spinal Surgery,” Medicina (Mex.), vol. 58, no. 4, p. 519, Apr. 2022, doi: 10.3390/medicina58040519. DOI: https://doi.org/10.3390/medicina58040519

M. Ziąbka, E. Menaszek, J. Tarasiuk, and S. Wroński, “Biocompatible Nanocomposite Implant with Silver Nanoparticles for Otology—In Vivo Evaluation,” Nanomaterials, vol. 8, no. 10, p. 764, Sep. 2018, doi: 10.3390/nano8100764. DOI: https://doi.org/10.3390/nano8100764

A. Gavaskar, D. Rojas, and F. Videla, “Nanotechnology: the scope and potential applications in orthopedic surgery,” Eur. J. Orthop. Surg. Traumatol., vol. 28, no. 7, pp. 1257–1260, Oct. 2018, doi: 10.1007/s00590-018-2193-z. DOI: https://doi.org/10.1007/s00590-018-2193-z

J. Kang, K. Hughes, M. Xing, and B. Li, “Orthopedic Applications of Silver and Silver Nanoparticles,” in Orthopedic Biomaterials, B. Li and T. Webster, Eds., Cham: Springer International Publishing, 2017, pp. 63–83. doi: 10.1007/978-3-319-73664-8_3. DOI: https://doi.org/10.1007/978-3-319-73664-8_3

T. K. C. Poon, K. P. Iyengar, and V. K. Jain, “Silver Nanoparticle (AgNP) Technology applications in trauma and orthopaedics,” J. Clin. Orthop. Trauma, vol. 21, p. 101536, Oct. 2021, doi: 10.1016/j.jcot.2021.101536. DOI: https://doi.org/10.1016/j.jcot.2021.101536

M. P. Sullivan, K. J. McHale, J. Parvizi, and S. Mehta, “Nanotechnology: current concepts in orthopaedic surgery and future directions,” Bone Jt. J., vol. 96-B, no. 5, pp. 569–573, May 2014, doi: 10.1302/0301-620X.96B5.33606. DOI: https://doi.org/10.1302/0301-620X.96B5.33606

R. Zhang et al., “Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model,” Nanomedicine Nanotechnol. Biol. Med., vol. 11, no. 8, pp. 1949–1959, Nov. 2015, doi: 10.1016/j.nano.2015.07.016. DOI: https://doi.org/10.1016/j.nano.2015.07.016

N. Mariappan, “Current trends in Nanotechnology applications in surgical specialties and orthopedic surgery,” Biomed. Pharmacol. J., vol. 12, no. 3, pp. 1095–1127, Sep. 2019, doi: 10.13005/bpj/1739. DOI: https://doi.org/10.13005/bpj/1739

W. R. Smith, P. W. Hudson, B. A. Ponce, and S. R. Rajaram Manoharan, “Nanotechnology in orthopedics: a clinically oriented review,” BMC Musculoskelet. Disord., vol. 19, no. 1, p. 67, Dec. 2018, doi: 10.1186/s12891-018-1990-1. DOI: https://doi.org/10.1186/s12891-018-1990-1

H. Sun et al., “Nanotechnology-enabled materials for hemostatic and anti-infection treatments in orthopedic surgery,” Int. J. Nanomedicine, vol. Volume 13, pp. 8325–8338, Dec. 2018, doi: 10.2147/IJN.S173063. DOI: https://doi.org/10.2147/IJN.S173063

V. K. Viswanathan, S. R. Rajaram Manoharan, S. Subramanian, and A. Moon, “Nanotechnology in Spine Surgery: A Current Update and Critical Review of the Literature,” World Neurosurg., vol. 123, pp. 142–155, Mar. 2019, doi: 10.1016/j.wneu.2018.11.035. DOI: https://doi.org/10.1016/j.wneu.2018.11.035

L. Bonilla-Gameros, P. Chevallier, A. Sarkissian, and D. Mantovani, “Silver-based antibacterial strategies for healthcare-associated infections: Processes, challenges, and regulations. An integrated review,” Nanomedicine Nanotechnol. Biol. Med., vol. 24, p. 102142, Feb. 2020, doi: 10.1016/j.nano.2019.102142. DOI: https://doi.org/10.1016/j.nano.2019.102142

A. Diez-Escudero, E. Carlsson, B. Andersson, J. D. Järhult, and N. P. Hailer, “Trabecular Titanium for Orthopedic Applications: Balancing Antimicrobial with Osteoconductive Properties by Varying Silver Contents,” ACS Appl. Mater. Interfaces, vol. 14, no. 37, pp. 41751–41763, Sep. 2022, doi: 10.1021/acsami.2c11139. DOI: https://doi.org/10.1021/acsami.2c11139

G. Graziani et al., “Ionized jet deposition of silver nanostructured coatings: Assessment of chemico-physical and biological behavior for application in orthopedics,” Biomater. Adv., vol. 159, p. 213815, May 2024, doi: 10.1016/j.bioadv.2024.213815. DOI: https://doi.org/10.1016/j.bioadv.2024.213815

L. Chen et al., “Translation of nanotechnology-based implants for orthopedic applications: current barriers and future perspective,” Front. Bioeng. Biotechnol., vol. 11, p. 1206806, Aug. 2023, doi: 10.3389/fbioe.2023.1206806. DOI: https://doi.org/10.3389/fbioe.2023.1206806

Y. Deng et al., “A mini-review on the emerging role of nanotechnology in revolutionizing orthopedic surgery: challenges and the road ahead,” Front. Bioeng. Biotechnol., vol. 11, p. 1191509, May 2023, doi: 10.3389/fbioe.2023.1191509. DOI: https://doi.org/10.3389/fbioe.2023.1191509

T. Faunce and A. Watal, “Nanosilver and Global Public Health: International Regulatory Issues,” Nanomed., vol. 5, no. 4, pp. 617–632, Jun. 2010, doi: 10.2217/nnm.10.33. DOI: https://doi.org/10.2217/nnm.10.33

S. H. S. Pol, “Recent Trends and Scope of Nanotechnology in Orthopaedic Surgery: A Narrative Review,” J. Clin. Diagn. Res., 2024, doi: 10.7860/JCDR/2024/69980.19480. DOI: https://doi.org/10.7860/JCDR/2024/69980.19480

S. A. Brennan, C. Ní Fhoghlú, B. M. Devitt, F. J. O’Mahony, D. Brabazon, and A. Walsh, “Silver nanoparticles and their orthopaedic applications,” Bone Jt. J., vol. 97-B, no. 5, pp. 582–589, May 2015, doi: 10.1302/0301-620X.97B5.33336. DOI: https://doi.org/10.1302/0301-620X.97B5.33336

H. Cheng, Y. Li, K. Huo, B. Gao, and W. Xiong, “Long‐lasting in vivo and in vitro antibacterial ability of nanostructured titania coating incorporated with silver nanoparticles,” J. Biomed. Mater. Res. A, vol. 102, no. 10, pp. 3488–3499, Oct. 2014, doi: 10.1002/jbm.a.35019. DOI: https://doi.org/10.1002/jbm.a.35019

M. Kumar, R. Kumar, and S. Kumar, “Coatings on orthopedic implants to overcome present problems and challenges: A focused review,” Mater. Today Proc., vol. 45, pp. 5269–5276, 2021, doi: 10.1016/j.matpr.2021.01.831. DOI: https://doi.org/10.1016/j.matpr.2021.01.831

M. E. Astaneh and N. Fereydouni, “Silver Nanoparticles in 3D Printing: A New Frontier in Wound Healing,” ACS Omega, vol. 9, no. 40, pp. 41107–41129, Oct. 2024, doi: 10.1021/acsomega.4c04961. DOI: https://doi.org/10.1021/acsomega.4c04961

S. Farjaminejad, R. Farjaminejad, and F. Garcia-Godoy, “Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering,” J. Funct. Biomater., vol. 15, no. 9, p. 241, Aug. 2024, doi: 10.3390/jfb15090241. DOI: https://doi.org/10.3390/jfb15090241

H. Jangid, S. Singh, P. Kashyap, A. Singh, and G. Kumar, “Advancing biomedical applications: an in-depth analysis of silver nanoparticles in antimicrobial, anticancer, and wound healing roles,” Front. Pharmacol., vol. 15, p. 1438227, Aug. 2024, doi: 10.3389/fphar.2024.1438227. DOI: https://doi.org/10.3389/fphar.2024.1438227

Downloads

Published

27-12-2024

Issue

Section

Research Articles

How to Cite

Silver Nanoparticle-Infused Bone Cement: Innovations in Orthopedic Biomaterials. (2024). International Journal of Scientific Research in Science and Technology, 11(6), 826-840. https://doi.org/10.32628/IJSRST241161134

Similar Articles

1-10 of 75

You may also start an advanced similarity search for this article.