Topical Fibronectin Improves Wound Healing in Postmastectomy Breast Cancer Radiation Therapy : A Review
DOI:
https://doi.org/10.32628/IJSRST52411291Keywords:
Fibronectin, Postmastectomy radiation therapy, Breast reconstruction, Skin ulcer, Breast cancerAbstract
Breast cancer is the most common cancer among women worldwide. Breast cancer provides an excellent example of how multidisciplinary management has improved patient outcomes. This paper synthesizes the complex and evolving evidence regarding the role of radiation therapy after mastectomy. Although substantial evidence indicates that radiation therapy can reduce the risk of locoregional failure after mastectomy. This therapy is known as PMRT. Postmastectomy radiotherapy (PMRT) is an essential component of combined therapy for early‐stage, high‐risk breast cancer. Breast reconstruction (BR) is often considered for patients with breast cancer who have undergone mastectomy. There has been a considerable amount of discussion about the optimal approach to combining PMRT with BR in the treatment of breast cancer. PMRT may increase the risk of complications and prevent good aesthetic results after BR, while BR may increase the complexity of PMRT and the radiation dose to surrounding normal tissues. The goal of a PMRT plan is to achieve optimal coverage of the target volume while minimizing the irradiation dose to normal tissues. The purpose of this review is to give a broad overview and summary of the current topical fibronectin improves wound healing in postmastectomy breast cancer radiation therapy. In summary, Exogenous fibronectin diminishes wound progression, by increasing angiogenesis & cell proliferation. This suggests that enhances healing by stimulating the appearance of fibroblasts into the wound site and development of granulation tissue. This acceleration of the repair process may have an important application in the healing of skin chronic wounds.
Downloads
References
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [CrossRef] DOI: https://doi.org/10.3322/caac.21551
Dillekås, H.; Rogers, M.S.; Straume, O. Are 90% of deaths from cancer caused by metastases? Cancer Med 2019, 8, 5574–5576. [CrossRef] [PubMed] DOI: https://doi.org/10.1002/cam4.2474
Guan, X. Cancer metastases: Challenges and opportunities. Acta Pharm. Sin. B 2015, 5, 402–418. [CrossRef] [PubMed] DOI: https://doi.org/10.1016/j.apsb.2015.07.005
Harbeck N, Gnant M. Breast cancer. Lancet. (2017) 389:1134–50. doi: 10.1016/S0140-6736(16)31891-8 DOI: https://doi.org/10.1016/S0140-6736(16)31891-8
Smith RA, Andrews KS, Brooks D, Fedewa SA, Manassaram-Baptiste D, SaslowD, et al. Cancer screening in the United States, 2017: a review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin. (2017) 67:100–21. doi: 10.3322/caac.21392 DOI: https://doi.org/10.3322/caac.21392
Curigliano G, Burstein HJ, Winer EP, Gnant M, Dubsky P, Loibl S, et al. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann Oncol. (2017) 28:1700–12. doi: 10.1093/annonc/mdx308 DOI: https://doi.org/10.1093/annonc/mdx308
Ribelles N, Perez-Villa L, Jerez JM, Pajares B, Vicioso L, Jimenez B, et al. Pattern of recurrence of early breast cancer is different according to intrinsic subtype and proliferation index. Breast Cancer Res. (2013) 15:R98. doi: 10.1186/bcr3559 DOI: https://doi.org/10.1186/bcr3559
Moo TA,McMillan R, LeeM, StempelM, Patil S, Ho A, et al. Selection criteria for postmastectomy radiotherapy in t1-t2 tumors with 1 to 3 positive lymph nodes. Ann Surg Oncol. (2013) 20:3169–74. doi: 10.1245/s10434-013-3117-0 DOI: https://doi.org/10.1245/s10434-013-3117-0
Darby S, McGale P, Correa C, Taylor C, Arriagada R, Clarke M, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. (2011) 378:1707–16. doi: 10.1016/S0140-6736(11)61629-2. DOI: https://doi.org/10.1016/S0140-6736(11)61629-2
Porock D & Kristjanson L Skin reactions during radiotherapy for breast cancer: the use and impact of topical agents and dressings. European journal of cancer care 8, 143–153 (1999). [PubMed: 10763645] DOI: https://doi.org/10.1046/j.1365-2354.1999.00153.x
Porock D, Nikoletti S & Kristjanson L Management of radiation skin reactions: literature review and clinical application. Plastic Surgical Nursing 19, 185 (1999). [PubMed: 12024597] DOI: https://doi.org/10.1097/00006527-199901940-00004
Azzam E, De Toledo S & Little J Stress signaling from irradiated to non-irradiated cells. Current cancer drug targets 4, 53–64 (2004). [PubMed: 14965267] DOI: https://doi.org/10.2174/1568009043481641
Martin M, Lefaix J-L & Delanian S TGF-β1 and radiation fibrosis: a master switch and a specific therapeutic target? International Journal of Radiation Oncology* Biology* Physics 47, 277–290 (2000). DOI: https://doi.org/10.1016/S0360-3016(00)00435-1
Hymes SR, Strom EA & Fife C Radiation dermatitis: clinical presentation, pathophysiology, and treatment 2006. Journal of the American Academy of Dermatology 54, 28–46 (2006). [PubMed: 16384753] DOI: https://doi.org/10.1016/j.jaad.2005.08.054
Jackson SP & Bartek J The DNA-damage response in human biology and disease. Nature 461, 1071 (2009). [PubMed: 19847258] DOI: https://doi.org/10.1038/nature08467
Lumniczky K & Sáfrány G The impact of radiation therapy on the antitumor immunity: local effects and systemic consequences. Cancer letters 356, 114–125 (2015). [PubMed: 23994343] DOI: https://doi.org/10.1016/j.canlet.2013.08.024
Brix N, Tiefenthaller A, Anders H, Belka C & Lauber K Abscopal, immunological effects of radiotherapy: Narrowing the gap between clinical and preclinical experiences. Immunological reviews 280, 249–279 (2017). [PubMed: 29027221] DOI: https://doi.org/10.1111/imr.12573
Jeong H, Bok S, Hong B-J, Choi H-S & Ahn G Radiation-induced immune responses: mechanisms and therapeutic perspectives. Blood research 51, 157–163 (2016). [PubMed: 27722125] DOI: https://doi.org/10.5045/br.2016.51.3.157
Formenti SC & Demaria S Systemic effects of local radiotherapy. The lancet oncology 10, 718–726 (2009). [PubMed: 19573801] DOI: https://doi.org/10.1016/S1470-2045(09)70082-8
Mehta S, Suhag V, Semwal M & Sharma N Radiotherapy: Basic concepts and recent advances. Medical Journal Armed Forces India 66, 158–162 (2010). DOI: https://doi.org/10.1016/S0377-1237(10)80132-7
Yoshimura M, Itasaka S, Harada H & Hiraoka M Microenvironment and radiation therapy. BioMed research international 2013 (2012). DOI: https://doi.org/10.1155/2013/685308
Zhao W & Robbins ME Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Current medicinal chemistry 16, 130–143 (2009). [PubMed: 19149566] DOI: https://doi.org/10.2174/092986709787002790
Terasaki Y et al. Hydrogen therapy attenuates irradiation-induced lung damage by reducing oxidative stress. American Journal of Physiology-Lung Cellular and Molecular Physiology 301, L415–L426 (2011). [PubMed: 21764987] DOI: https://doi.org/10.1152/ajplung.00008.2011
Begg AC, Stewart FA & Vens C Strategies to improve radiotherapy with targeted drugs. Nature Reviews Cancer 11, 239 (2011). [PubMed: 21430696] DOI: https://doi.org/10.1038/nrc3007
Farmer H et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917 (2005). [PubMed: 15829967] DOI: https://doi.org/10.1038/nature03445
Hall E & Giaccia A Radiobiology for the Radiologist. 6th Edition, Lippincott Williams and Wilkins, Philadelphia (2006).
Cox JD & Ang KK Radiation Oncology E-Book: Rationale, Technique, Results. (Elsevier Health Sciences, 2009).
Straub JM et al. Radiation-induced fibrosis: mechanisms and implications for therapy. Journal of cancer research and clinical oncology 141, 1985–1994 (2015). [PubMed: 25910988] DOI: https://doi.org/10.1007/s00432-015-1974-6
O’Sullivan B & Levin W Late radiation-related fibrosis: pathogenesis, manifestations, and current management In Seminars in radiation oncology. Elsevier,. 274–289 (2003). DOI: https://doi.org/10.1016/S1053-4296(03)00037-7
Delanian S & Lefaix J-L Current management for late normal tissue injury: radiation-induced fibrosis and necrosis In Seminars in radiation oncology. Elsevier 99–107 (2007). DOI: https://doi.org/10.1016/j.semradonc.2006.11.006
Bentzen SM, Thames HD & Overgaard M Latent-time estimation for late cutaneous and subcutaneous radiation reactions in a single-follow-up clinical study. Radiotherapy and Oncology 15, 267–274 (1989). [PubMed: 2772254] DOI: https://doi.org/10.1016/0167-8140(89)90095-9
Li M, Jendrossek V & Belka C The role of PDGF in radiation oncology. Radiation Oncology 2, 5 (2007). [PubMed: 17217530] DOI: https://doi.org/10.1186/1748-717X-2-5
Verrecchia F & Mauviel A Transforming growth factor-β and fibrosis. World journal of gastroenterology: WJG 13, 3056 (2007). [PubMed: 17589920] DOI: https://doi.org/10.3748/wjg.v13.i22.3056
ten Dijke P & Hill CS New insights into TGF-β–Smad signalling. Trends in biochemical sciences 29, 265–273 (2004). [PubMed: 15130563] DOI: https://doi.org/10.1016/j.tibs.2004.03.008
Borrelli MR et al. Fat Chance: The Rejuvenation of Irradiated Skin. Plastic and Reconstructive Surgery–Global Open (2019). DOI: https://doi.org/10.1097/GOX.0000000000002092
Feng X-H & Derynck R Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659–693 (2005). [PubMed: 16212511] DOI: https://doi.org/10.1146/annurev.cellbio.21.022404.142018
Yarnold J & Brotons M-CV Pathogenetic mechanisms in radiation fibrosis. Radiotherapy and oncology 97, 149–161 (2010). [PubMed: 20888056] DOI: https://doi.org/10.1016/j.radonc.2010.09.002
Chithra P, Sajithlal G & Chandrakasan G Influence of Aloe vera on the glycosaminoglycans in the matrix of healing dermal wounds in rats. Journal of ethnopharmacology 59, 179–186 (1998). [PubMed: 9507902] DOI: https://doi.org/10.1016/S0378-8741(97)00112-8
Yuan W & Varga J Transforming growth factor-β repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. Journal of Biological Chemistry 276, 38502–38510 (2001). [PubMed: 11502752] DOI: https://doi.org/10.1074/jbc.M107081200
Lindegren A et al. Autologous fat transplantation alters gene expression patterns related to inflammation and hypoxia in the irradiated human breast. British Journal of Surgery (2019). DOI: https://doi.org/10.1002/bjs.11072
Phulpin B et al. Rehabilitation of irradiated head and neck tissues by autologous fat transplantation. Plastic and reconstructive surgery 123, 1187–1197 (2009). [PubMed: 19337087] DOI: https://doi.org/10.1097/PRS.0b013e31819f2928
Garza RM et al. Studies in Fat Grafting: Part III. Fat grafting irradiated tissue: Improved skin quality and decreased fat graft retention. Plastic and reconstructive surgery 134, 249 (2014). [PubMed: 25068325] DOI: https://doi.org/10.1097/PRS.0000000000000326
Falanga V, Zhou L & Yufit T Low oxygen tension stimulates collagen synthesis and COL1A1 transcription through the action of TGF‐β1. Journal of cellular physiology 191, 42–50 (2002). [PubMed: 11920680] DOI: https://doi.org/10.1002/jcp.10065
Mukesh MB et al. Randomized controlled trial of intensity-modulated radiotherapy for early breast cancer: 5-year results confirm superior overall cosmesis. Journal of Clinical Oncology 31, 4488–4495 (2013). [PubMed: 24043742] DOI: https://doi.org/10.1200/JCO.2013.49.7842
Mukesh MB et al. Normal tissue complication probability (NTCP) parameters for breast fibrosis: pooled results from two randomised trials. Radiotherapy and Oncology 108, 293–298 (2013). [PubMed: 23953408] DOI: https://doi.org/10.1016/j.radonc.2013.07.006
Mukesh M, Harris E, Jena R, Evans P & Coles C Relationship between irradiated breast volume and late normal tissue complications: a systematic review. Radiotherapy and Oncology 104, 1–10 (2012). [PubMed: 22682540] DOI: https://doi.org/10.1016/j.radonc.2012.04.025
Whelan TJ et al. Long-term results of hypofractionated radiation therapy for breast cancer. New England Journal of Medicine 362, 513–520 (2010). [PubMed: 20147717] DOI: https://doi.org/10.1056/NEJMoa0906260
Pignol J-P et al. Ten years results of the Canadian breast intensity modulated radiation therapy (IMRT) randomized controlled trial. Radiotherapy and oncology 121, 414–419 (2016). [PubMed: 27637858] DOI: https://doi.org/10.1016/j.radonc.2016.08.021
Haviland JS et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. The lancet oncology 14, 1086–1094 (2013). [PubMed: 24055415] DOI: https://doi.org/10.1016/S1470-2045(13)70386-3
Koerdt S et al. An expression analysis of markers of radiation-induced skin fibrosis and angiogenesis in wound healing disorders of the head and neck. Radiation Oncology 10, 202 (2015). [PubMed: 26390925] DOI: https://doi.org/10.1186/s13014-015-0508-3
Wang J, Boerma M, Fu Q & Hauer-Jensen M Radiation responses in skin and connective tissues: effect on wound healing and surgical outcome. Hernia 10, 502–506 (2006). [PubMed: 17047884] DOI: https://doi.org/10.1007/s10029-006-0150-y
Classen J et al. Fibrotic changes after postmastectomy radiotherapy and reconstructive surgery in breast cancer. A retrospective analysis in 109 patients. Strahlenther Onkol 186, 630–636, doi:10.1007/s00066-010-2158-6 (2010). [PubMed: 21072625] DOI: https://doi.org/10.1007/s00066-010-2158-6
Cho H, Mariotto AB, Schwartz LM, Luo J & Woloshin S When do changes in cancer survival mean progress? The insight from population incidence and mortality. Journal of the National Cancer Institute Monographs 2014, 187–197 (2014). [PubMed: 25417232] DOI: https://doi.org/10.1093/jncimonographs/lgu014
Berkey FJ Managing the adverse effects of radiation therapy. Am Fam Physician 82, 381–388 (2010). [PubMed: 20704169]
Overgaard M, Jensen MB, Overgaard J, et al. Postoperative radiotherapy in high-risk postmenopausal breast-cancer patients given adjuvant tamoxifen: Danish breast cancer cooperative group DBCG 82c randomised trial. Lancet. 1999; 353(9165):1641-1648. DOI: https://doi.org/10.1016/S0140-6736(98)09201-0
Tendulkar RD, Rehman S, Shukla ME, et al. Impact of postmastectomy radiation on locoregional recurrence in breast cancer patients with 1-3 positive lymph nodes treated with modern systemic therapy. Int J Radiat Oncol Biol Phys. 2012;83(5):e577-e581. DOI: https://doi.org/10.1016/j.ijrobp.2012.01.076
S, Lefaix JL. The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway. Radiother Oncol. 2004;73(2):119-131. DOI: https://doi.org/10.1016/j.radonc.2004.08.021
Disa JJ, McCarthy CM, Mehrara BJ, Pusic AL, Hu QY, Cordeiro PG. Postmastectomy reconstruction: an approach to patient selection. Plast Reconstr Surg. 2009;124(1): 43-52. DOI: https://doi.org/10.1097/PRS.0b013e31818b9005
Percec I, Bucky LP. Successful prosthetic breast reconstruction after radiation therapy. Ann Plast Surg. 2008;60(5): 527-531. DOI: https://doi.org/10.1097/SAP.0b013e318172f5fc
Sigalove S. Options in acellular dermal matrix-device assembly. Plast Reconstr Surg. 2017;140(6S Prepectoral Breast Reconstruction): 39S-42S. DOI: https://doi.org/10.1097/PRS.0000000000004049
Nahabedian MY. Innovations and advancements with prosthetic breast reconstruction. Breast J. 2018;24(4):586-591. DOI: https://doi.org/10.1111/tbj.12998
Kobraei EM, Cauley R, Gadd M, Austen WG Jr, Liao EC. Avoiding breast animation deformity with pectoralis-sparing subcutaneous direct-to-implant breast reconstruction. Plast Reconstr Surg Glob Open. 2016;4(5):e708. DOI: https://doi.org/10.1097/GOX.0000000000000681
Bettinger LN, Waters LM, Reese SW, Kutner SE, Jacobs DI. Comparative study of prepectoral and subpectoral expanderbased breast reconstruction and Clavien IIIb score outcomes. Plast Reconstr Surg Glob Open. 2017;5(7):e1433. DOI: https://doi.org/10.1097/GOX.0000000000001433
Li Y, Xu G, Yu N, Huang J, Long X. Prepectoral versus subpectoral implant-based breast reconstruction: a meta-analysis. Ann Plast Surg. 2020;85(4):437-447. DOI: https://doi.org/10.1097/SAP.0000000000002190
Ebctcg MGP, Taylor C, Correa C, et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet. 2014;383(9935):2127-2135.
Thorsen LB, Offersen BV, Dano H, et al. DBCG-IMN: a population-based cohort study on the effect of internal mammary node irradiation in early node-positive breast cancer. J Clin Oncol. 2016;34(4):314-320. DOI: https://doi.org/10.1200/JCO.2015.63.6456
Kronowitz SJ. Current status of autologous tissue-based breast reconstruction in patients receiving postmastectomy radiation therapy. Plast Reconstr Surg. 2012;130(2):282-292. DOI: https://doi.org/10.1097/PRS.0b013e3182589be1
Borrelli MR, Shen AH, Lee GK, Momeni A, Longaker MT, Wan DC. Radiation-induced skin fibrosis: pathogenesis, current treatment options, and emerging therapeutics. Ann Plast Surg. 2019;83(4S Suppl 1):S59-S64. DOI: https://doi.org/10.1097/SAP.0000000000002098
Ho AL, Bovill ES, Macadam SA, Tyldesley S, Giang J, Lennox PA. Postmastectomy radiation therapy after immediate two-stage tissue expander/implant breast reconstruction: a University of British Columbia perspective. Plast Reconstr Surg. 2014;134(1):1e-10e. DOI: https://doi.org/10.1097/PRS.0000000000000292
Carlson GW. Should we be doing implant-based breast reconstruction in the setting of radiotherapy? Ann Surg Oncol. 2014; 21(7):2122-2123. DOI: https://doi.org/10.1245/s10434-014-3491-2
Yun JH, Diaz R, Orman AG. Breast reconstruction and radiation therapy. Cancer Control. 2018;25(1):1073274818795489. DOI: https://doi.org/10.1177/1073274818795489
Whitfield GA, Horan G, Irwin MS, Malata CM, Wishart GC, Wilson CB. Incidence of severe capsular contracture following implant-based immediate breast reconstruction with or without postoperative chest wall radiotherapy using 40 Gray in 15 fractions. Radiother Oncol. 2009;90(1):141-147. DOI: https://doi.org/10.1016/j.radonc.2008.09.023
Taghizadeh R, Moustaki M, Harris S, Roblin P, Farhadi J. Does post-mastectomy radiotherapy affect the outcome and prevalence of complications in immediate DIEP breast reconstruction? A prospective cohort study. J Plast Reconstr Aesthet Surg. 2015;68(10):1379-1385. DOI: https://doi.org/10.1016/j.bjps.2015.06.003
Jhaveri JD, Rush SC, Kostroff K, et al. Clinical outcomes of postmastectomy radiation therapy after immediate breast reconstruction. Int J Radiat Oncol Biol Phys. 2008;72(3): 859-865. DOI: https://doi.org/10.1016/j.ijrobp.2008.01.055
Filip CI, Jecan CR, Raducu L, Neagu TP, Florescu IP. Immediate versus delayed breast reconstruction for postmastectomy patients. controversies and solutions. Chirurgia (Bucur). 2017;112(4):378– 86. https://doi.org/10.21614/chirurgia.112.4.378 DOI: https://doi.org/10.21614/chirurgia.112.4.378
Stone, H. B., Coleman, C. N., Anscher, M. S. & McBride, W. H. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 4, 529–536 (2003). DOI: https://doi.org/10.1016/S1470-2045(03)01191-4
Pankov, R. & Yamada, K. M. Fibronectin at a glance. J Cell Sci 115, 3861–3863, doi:10.1242/jcs.00059 (2002). DOI: https://doi.org/10.1242/jcs.00059
Clark, R. A. et al. Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J Invest Dermatol. 79, 264–269 (1982). DOI: https://doi.org/10.1111/1523-1747.ep12500075
Zhu, J. & Clark, R. A. Fibronectin at select sites binds multiple growth factors and enhances their activity: expansion of the collaborative ECM-GF paradigm. J Invest Dermatol 134, 895–901, doi:10.1038/jid.2013.484 (2014). DOI: https://doi.org/10.1038/jid.2013.484
Cordes, N. & Beinke, C. Fibronectin alters cell survival and intracellular signaling of confluent A549 cultures after irradiation. Cancer Biol Ther. 3, 47–53 (2004). DOI: https://doi.org/10.4161/cbt.3.1.570
Cordes, N., Blaese, M. A., Plasswilm, L., Rodemann, H. P. & Van Beuningen, D. Fibronectin and laminin increase resistance to ionizing radiation and the cytotoxic drug Ukrain in human tumour and normal cells in vitro. Int J Radiat Biol. 79, 709–720 (2003). DOI: https://doi.org/10.1080/09553000310001610240
Martino, M. M. et al. Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci Transl Med. 3, 100ra189, doi:10.1126/scitranslmed.3002614 (2011). DOI: https://doi.org/10.1126/scitranslmed.3002614
Moroz, A. & Deffune, E. Platelet-rich plasma and chronic wounds: remaining fibronectin may influence matrix remodeling and regeneration success. Cytotherapy. 15, 1436–1439, doi:10.1016/j.jcyt.2013.05.019 (2013). DOI: https://doi.org/10.1016/j.jcyt.2013.05.019
Tortelli, F., Pisano, M., Briquez, P. S., Martino, M. M. & Hubbell, J. A. Fibronectin binding modulates CXCL11 activity and facilitates wound healing. PLoS One. 8, e79610, doi:10.1371/journal.pone.0079610 (2013). DOI: https://doi.org/10.1371/journal.pone.0079610
Overgaard M, Nielsen HM, Overgaard J. Is the benefit of postmastectomy irradiation limited to patients with four or more positive nodes, as recommended in international consensus reports? A subgroup analysis of the DBCG 82 b&c randomized trials. Radiother Oncol. (2007) 82:247–53. doi: 10.1016/j.radonc.2007.02.001PubMed Abstract | CrossRef Full Text | Google Scholar DOI: https://doi.org/10.1016/j.radonc.2007.02.001
Tseng YD, Uno H, Hughes ME, Niland JC, Wong YN, Theriault R, et al. Biological subtype predicts risk of locoregional recurrence after mastectomy and impact of postmastectomy radiation in a large national database. Int J Radiat Oncol Biol Phys. (2015) 93:622–30. doi: 10.1016/j.ijrobp.2015.07.006PubMed Abstract | CrossRef Full Text | Google Scholar DOI: https://doi.org/10.1016/j.ijrobp.2015.07.006
Frasier LL, Holden S, Holden T, Schumacher JR, Leverson G, Anderson B, et al. Temporal trends in postmastectomy radiation therapy and breast reconstruction associated with changes in national comprehensive cancer network guidelines. JAMA Oncol. (2016) 2:95–101. doi: 10.1001/jamaoncol.2015.3717PubMed Abstract | CrossRef Full Text | Google Scholar DOI: https://doi.org/10.1001/jamaoncol.2015.3717
McGale P, Taylor C, Correa C, Cutter D, Duane F, Ewertz M, et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet. (2014) 383:2127–35. doi: 10.1016/S0140-6736(14)60488-8PubMed Abstract | CrossRef Full Text | Google Scholar DOI: https://doi.org/10.1016/S0140-6736(14)60488-8
Harris JR. Treatment of regional lymph nodes in breast cancer-not recommended for all patients with 1 to 3 positive auxiliary nodes. JAMA Oncol. (2016) 2:991–2.doi:10.1001/jamaoncol.2016.0222PubMed Abstract | CrossRef Full Text | Google Scholar DOI: https://doi.org/10.1001/jamaoncol.2016.0222
Poortmans PM, Coles C, Bernier J. Treatment of regional lymph nodes in breast cancer-evidence in favor of radiation therapy. JAMA Oncol. (2016) 2:989–90. doi: 10.1001/jamaoncol.2016.0183 DOI: https://doi.org/10.1001/jamaoncol.2016.0183
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.