Drying Stages of Blood Drops

Authors

  • Aishwarya kale Department of Forensic Science, Yashwantarao Chavan Institute of Science Satara, Maharashtra, India Author
  • Pratima Salunkhe Department of Forensic Science, Yashwantarao Chavan Institute of Science Satara, Maharashtra, India Author

DOI:

https://doi.org/10.32628/IJSRST24112129

Keywords:

Blood Drops, Drying Stages, Bloodstain

Abstract

Blood is one of the most important & most frequently encountered evidence in criminal investigation. It can be found in almost every type of criminal activity involving physical violence like murders, robberies, rape cases, etc. Blood stain may found on location such as seen of occurrence, the culprit, the victim, the weapon, of offence, the vehicle and the route taken by the culprit. The position, size & shape of the stain often help in reconstruction of crime seen. The stain may be in the form of splashes, smears, & pools. The colour of the bloodstains varies accordingly to their age, the amount of blood present, and the nature of the material. As bloodstain increases in age, they progress through series of colour changes from red to reddish brown to green & eventually to dark brown to black. When blood is exposed to an external environment the drying process on various surfaces is initiate. Size, volume, nature of target surface, & influence of external environment such as temperature humidity, air flow affects the drying time of bloodstain. The drying of bloodstain is initially around the edges or periphery and proceeds inward to the central portion of the stain as the drying process continues. Drying time and skeletonization are both important alteration of blood. Presence of significant dried & clotted blood on surface at a scene indicates a significant time lapse between blood shade & the observation of the blood.

Downloads

Download data is not yet available.

References

S. H. James, P. E. Kish, T.P. Sutton, A. L. Carter, W.L. Fisher, C. Henderson, Scientific & Legal Application of Bloodstain pattern 1999.

MacDonell, H. L. and Bialousz, L. F. Flight Characteristics and stain Patterns of Human Blood, Washington, D. C., U. S. Dept. of Justice, Law Enforcement Assistance, National Institute of Law Enforcement and Criminal Justice, 1971.

Pizzola, P. A. and Deforest, P. R., Blood Droplet Dynamics 2, Journal of Forensic Science, JFSCA, Vol. 31, No. 1, Jan 1986, pp. 50-54.

S. H. James, P. E. Kish, Sutton, Principles of Bloodstain Pattern Analysis, Theory and Practice, CRC, 2005. DOI: https://doi.org/10.1201/9781420039467

H. F. Bartz, Estimating original bloodstain volume: the development of a new technique relating volume and surface area, Ph.D. thesis, Department of Biology, Laurentian University, Sudbury, Ontario (2003).

H. Lee, Estimation of original volume of bloodstains, Identification News 9 (1986) 4.

S. P. Sant, S. I. Fair grieve, Exsanguinated blood volume estimation using fractal analysis of digital images*, Journal of forensic sciences 57 (3) (2012) 610–617. DOI: https://doi.org/10.1111/j.1556-4029.2012.02056.x

N. Laan, R. H. Bremmer, M. C. G. Aalders, K. G. de Bruin, Volume determination of fresh and dried bloodstains by means of optical coherence tomography, J. Forensic Sci. 59 (1) (2014) 34–41. DOI: https://doi.org/10.1111/1556-4029.12272

N. Laan, K. G. de Bruin, D. Slenter, J. Wilhelm, M. Jermy, D. Bonn, Bloodstain pattern analysis: implementation of a fluid dynamic model for position determination of victims, Scientific reports 5. DOI: https://doi.org/10.1038/srep11461

D. Brutin, B. Sobac, B. Loquet, J. Sampol, Pattern formation in drying drops of blood, Journal of fluid mechanics 667 (2011) 85–95. DOI: https://doi.org/10.1017/S0022112010005070

B. Sobac, D. Brutin, Structural and evaporative evolutions in desiccating sessile drops of blood, Physical Review E 84 (1) (2011) 011603. DOI: https://doi.org/10.1103/PhysRevE.84.011603

W. Bouzeid, D. Brutin, Influence of relative humidity on spreading, pattern formation and adhesion of a drying drop of whole blood, Colloids and Surfaces A: Physicochemical and Engineering Aspects 430 (2013) 1–7. DOI: https://doi.org/10.1016/j.colsurfa.2013.03.019

W. B. Zeid, J. Vicente, D. Brutin, Influence of evaporation rate on cracks formation of a drying drop of whole blood, Colloids and Surfaces A: Physicochemical and Engineering Aspects 432 (2013) 139–146. DOI: https://doi.org/10.1016/j.colsurfa.2013.04.044

B. Sobac, D. Brutin, Desiccation of a sessile drop of blood: cracks, folds formation and delamination, Colloids and Surfaces A: Physicochemical and Engineering Aspects 448 (2014) 34–44. DOI: https://doi.org/10.1016/j.colsurfa.2014.01.076

F. Ramsthaler, J. Schlote, C. Wagner, J. Fiscina, M. Kettner, The ring phenomenon of diluted blood droplets, International journal of legal medicine 130 (3) (2016) 731–736. DOI: https://doi.org/10.1007/s00414-015-1304-1

Deegan, R. D. 2000 Pattern formation in drying drops. Phys. Rev. E 61, 475–485. DOI: https://doi.org/10.1103/PhysRevE.61.475

Martusevich, A. K., Zimin, Y. & Bochkareva, A.2007 Morphology of dried blood serum specimens of viral hepatitis. Hepatitis Mon. 7, 207–210.

Shabalin, V. N. & Shatokhina, S. N.2007 Diagnostic markers in the structures of human biological liquids. Singap. Med. J. 48, 440–446.

Zhuang, H., Coulepis, A. G., Locarnini, S. A. & Gust, I. D. 1982 Detection of markers of hepatitis B infection in serum dried on to filter-paper: an application to field studies. Bull. World Health Organ. 60, 783–787.

Yakhno, T. 2008 Salt-induced protein phase transitions in drying drops. J. Colloid Interface Sci. 318, 225–230. DOI: https://doi.org/10.1016/j.jcis.2007.10.020

Pozrikidis, C. 2006 Flipping of an adherent blood platelet over a substrate. J. Fluid Mech. 568, 161–172. DOI: https://doi.org/10.1017/S002211200600156X

Pauchard, L., Parisse, F. & Alain, C. 1999 Influence of salt content on crack patterns formed through colloidal suspension desiccation. Phys. Rev. E 59, 3737–3740. DOI: https://doi.org/10.1103/PhysRevE.59.3737

Popov, Y. O. 2005 Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71, 036313. DOI: https://doi.org/10.1103/PhysRevE.71.036313

Peschel O, Kunz SN, Rothschild MA, Mützel E (2011) Blood stain pattern analysis. Forensic Sci Med Pathol 7(3):257–270. DOI: https://doi.org/10.1007/s12024-010-9198-1

White RB (1986) Bloodstain pattern of fabrics—the effect of drop volume, dropping height and impact angle. J Canadian Society Forensic Sci 19(1):3–36. DOI: https://doi.org/10.1080/00085030.1986.10757399

Stuart H J ,Kish P E, Sutton TP (2005) Principles of bloodstain pattern analysis. Theory and Practice. Taylor & Francis, Boca Raton

Karger B, Rand S P, Brinkmann B(1998)Experimental bloodstains on fabric from contact and from droplets. Int J Legal Med 111(1):17–21. DOI: https://doi.org/10.1007/s004140050104

Rothschild MA (2008) Analyse des Blutspurenverteilungsmusters. In: Kneubuehl BP, Coupland RM, Rothschild MA, Thali MJ (eds) Wundballistik, 3. Aufl. Springer, Berlin.

Rand S, Madea B, Brinkmann B (1985) Zur Morphologie von Blutspuren. Beitr Gerichtl Med XLIII:259–264.

MacDonell HL (1993) Bloodstain patterns. Golas, NY.

Bevel T, Gardener RM (1997) Bloodstain pattern analysis with an introduction to crime scene reconstruction. CRC, Boca Eaton.

Karger B, Rand S, Fracasso T, Pfeiffer H (2008) Bloodstain pattern analysis—casework experience. Forensic Sci Int 181:15–20. DOI: https://doi.org/10.1016/j.forsciint.2008.07.010

Kettner M, Ramsthaler F, Schnabel A (2010) “Bubbles” a spot diagnosis. J Forensic Sci 55(3):842–844. DOI: https://doi.org/10.1111/j.1556-4029.2009.01284.x

Sauvageau A, Schellenberg M, Racette S, Julien F (2007) Bloodstain pattern analysis in a case of fatal varicose vein rupture. Am J Forensic Med Pathol 28:35–37. DOI: https://doi.org/10.1097/01.paf.0000257390.59657.6a

Wilson CI, Altschul S, Mead A, Flannagan LM (2004) Bloodstain pattern analysis in a case of suicide with a compound bow and arrow. Am J Forensic Med Pathol 25:80–82. DOI: https://doi.org/10.1097/01.paf.0000113857.07024.fa

Barni F, Lewis SW, Berti A, Miskelly GM, Lago G (2007) Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta 72:896–913. DOI: https://doi.org/10.1016/j.talanta.2006.12.045

Laux DL (1991) Effects on luminol on the subsequent analysis of bloodstains. J Forensic Sci 36:1512. DOI: https://doi.org/10.1520/JFS13171J

Laux DL (2005) The detection of blood using luminol. In: James S, Kish PE, Sutton TP (eds) Principles of bloodstain pattern analysis: theory and practice. CRC, Boca Raton, pp 369–389.

Lytle LT, Hedgecock DG (1978) Chemiluminescence in the visualization of forensic bloodstains. J Forensic Sci 23:550–555. DOI: https://doi.org/10.1520/JFS10706J

Weber K (1966) Die Anwendung der Chemilumineszenz des Luminols. Z Gerichtl Med 57:410. DOI: https://doi.org/10.1007/BF00583303

Quickenden TI, Creamer JI (2001) A study of common interferences with the forensic luminol test for blood. Luminescence 16:295–298. DOI: https://doi.org/10.1002/bio.657.abs

Ackermann K, Ballantyne KN, Kayser M (2010) Estimating trace deposition time with circadian biomarkers: a prospective and versatile tool for crime scene reconstruction. DOI: https://doi.org/10.1007/s00414-010-0457-1

Anderson S, Howard B, Hobbs GR, Bishop CP (2005) A method for determining the age of a bloodstain. Forensic Sci Int 148:37–45. DOI: https://doi.org/10.1016/j.forsciint.2004.04.071

Donaldson A, Walker NK, Cordiner SJ, Taylor MC (2010) Using oral microbial DNA analysis to identify expirated blood spatter. Int J Legal Med 124(6):569–576. DOI: https://doi.org/10.1007/s00414-010-0426-8

Gardener RM (2002) Directionality in swipe patterns. J Forensic Ident 52(5):579.

Pizzola P A ,Roth S ,DeForest PR(1986)Blood droplet dynamics—I. JFSCA 31(1):36–49. DOI: https://doi.org/10.1520/JFS11857J

Pizzola PA, Roth S, De Forest PR (1986) Blood droplet dynamics— II. JFSCA 31(1):50–64. DOI: https://doi.org/10.1520/JFS11858J

Buck U, Kneubuehl B, Näther S, Albertini N, Schmidt L, Thali M (2011) 3D bloodstain pattern analysis: ballistic reconstruction of the trajectories of blood drops and determination of the centres of origin of the bloodstains. Forensic Sci Int 206:22–28. DOI: https://doi.org/10.1016/j.forsciint.2010.06.010

Donaldson AE, Walker NK, Lamont IL, Cordiner SJ, Taylor MC (2011) Characterising the dynamics of expirated bloodstain pattern formation using high-speed digital video imaging. Int J Legal Med 125:757–762. DOI: https://doi.org/10.1007/s00414-010-0498-5

Laber TL (1985) Diameter of a bloodstain as a function of origin. Distance fallen and volume of drop. IABPA News 2(1):12–16.

Laber TL, Epstein BP (1983) Bloodstain pattern analysis. Callen, Minneapolis.

Ramsthaler F, Schmidt P, Bux R, Potente S, Kaiser C, Kettner M (2012) Drying properties of bloodstains on common indoor surfaces. Int J Legal Med 126(5):739–746.

James SH, Kish PE, Sutton TP (2005) Principles of bloodstain pattern analysis: theory and practice. Taylor and Francis – CRC Press, Boca Raton. DOI: https://doi.org/10.1201/9781420039467

Laber TL, Epstein BP (2001) Substrate effects on the clotting time of human blood. J Can Soc Forensic Sci 34(4):209–214. DOI: https://doi.org/10.1080/00085030.2001.10757531

Stuart HJ, Kish PE, Sutton TP (2005) Principles of bloodstain pattern analysis: theory and practice. Taylor & Francis, Boca Raton.

Bevel T, Gardener RM (1997) Bloodstain pattern analysis with an introduction to crime scene reconstruction. CRC, Boca Raton.

Gardener RM (2002) Directionality in swipe patterns. J Forensic Ident 52(5):579.

Kettner M, Schmidt A, Windgassen M, Schmidt P, Wagner C, Ramsthaler F (2015) Impact height and wall distance in bloodstain pattern analysis—what patterns of round bloodstains can tell us. Int J Legal Med 129(1):133–140. DOI: https://doi.org/10.1007/s00414-014-1036-7

Peschel O, Kunz S N, Rothschild MA, Mützel E (2011)Blood stain pattern analysis. Forensic Sci Med Pathol 7(3):257–270. DOI: https://doi.org/10.1007/s12024-010-9198-1

Stuart HJ, Kish PE, Sutton TP (2005) Principles of bloodstain pattern analysis. Theory and practice. Taylor & Francis, Boca Raton.

Anderson S, Howard B, Hobbs GR, Bishop CP (2005) A method for determining the age of a bloodstain. Forensic Sci Int 148:37–45. DOI: https://doi.org/10.1016/j.forsciint.2004.04.071

Pizzola PA, Roth S, De Forest PR (1986) Blood droplet dynamics—I. JFSCA 31(1):36–49. DOI: https://doi.org/10.1520/JFS11857J

Pizzola PA, Roth S, De Forest PR (1986) Blood droplet dynamics—II. JFSCA 31(1):50–64. DOI: https://doi.org/10.1520/JFS11858J

Ramsthaler F, Schmidt P, Bux R, Potente S, Kaiser C, Kettner M (2012) Drying properties of bloodstains on common indoor surfaces. Int J Legal Med 126(5):739–746. DOI: https://doi.org/10.1007/s00414-012-0734-2

Ramsthaler F, Schlote J, Wagner C, Fiscina J, Kettner M(2016)The ring phenomenon of diluted blood droplets. Int J Legal Med 30(3): 731–736. DOI: https://doi.org/10.1007/s00414-015-1304-1

Raymond MA, Smith ER, Liesegang J (1996) The physical properties of blood—forensic considerations. Sci Justice 36:153–160. DOI: https://doi.org/10.1016/S1355-0306(96)72590-X

White RB (1986) Bloodstain pattern of fabrics—the effect of drop volume, dropping height and impact angle. J Canadian Society Forensic Sci 19(1):3–36. DOI: https://doi.org/10.1080/00085030.1986.10757399

Ramsthaler F, Schmidt P, Bux R, Potente S, Kaiser C, Kettner M (2012) Drying properties of bloodstains on common indoor surfaces. Int J Legal Med 126(5):739–746. DOI: https://doi.org/10.1007/s00414-012-0734-2

Downloads

Published

25-04-2024

Issue

Section

Research Articles

How to Cite

Drying Stages of Blood Drops. (2024). International Journal of Scientific Research in Science and Technology, 11(2), 806-846. https://doi.org/10.32628/IJSRST24112129

Similar Articles

You may also start an advanced similarity search for this article.