Spatio-Temporal Variations of Surface Melt Over Antarctic Ice Shelves using SCATSAT-1 Data

Authors

  • Pooja Mishra Department of Geology, M. G. Science Institute, Ahmedabad, India Author
  • Naveen Tripathi Space Applications Centre, ISRO, Ahmedabad, India Author
  • S. R. Oza Research Scholar, Gujarat University, Ahmedabad, India Author
  • P. M. Solanki Department of Geology, M. G. Science Institute, Ahmedabad, India Author
  • N. Y. Bhatt Department of Geology, M. G. Science Institute, Ahmedabad, India Author

DOI:

https://doi.org/10.32628/IJSRST24112165

Keywords:

Antarctica, Ice Shelf, Remote Sensing, Surface Melt, SCATSAT-1

Abstract

Surface melting is a significant issue in Antarctica, affecting glacier movements and climate change. During summer, surface meltwaters from ponds circulate over ice shelves, causing mass loss. These melt water percolates down to shelf through crevasses and affects the iceshelf instability or break the ice shelf. Antarctica experiences a surface melting increase of around 3.5 million square kilometres for every one-degree rise in summer temperature. In this study we use remote-sensing data sets to assess the spatial and temporal distribution of surface melt over Antarctic ice shelves. We use microwave brightness temperature (Tb) to evaluate surface melting on ice shelves. Total four ice shelves from East and West Antarctica were selected for research due to their significant surface melting issues. The study estimated cumulative melt days over these ice shelves for year 2017 and 2018, and investigated melt variations over transect profiles. It was found that year 2018 showed increased amount in melt days in some regions of selected ice shelves.

Downloads

Download data is not yet available.

References

Baumhoer, C. A., Dietz, A. J., Dech, S., & Kuenzer, C. (2018). Remote sensing of Antarctic glacier and ice-shelf front dynamics—A review. Remote Sensing, 10(9), 1445. DOI: https://doi.org/10.3390/rs10091445

Chang, A. T., & Shiue, J. C. (1980). A comparative study of microwave radiometer observations over snowfields with radiative transfer model calculations. Remote Sensing of Environment, 10(3), 215-229. DOI: https://doi.org/10.1016/0034-4257(80)90025-5

Chang, T. C., Gloersen, P., Schmugge, T., Wilheit, T. T., & Zwally, H. J. (1976). Microwave emission from snow and glacier ice. Journal of Glaciology, 16(74), 23-39. DOI: https://doi.org/10.3189/S0022143000031415

De Rydt, J., Gudmundsson, G. H., Nagler, T., & Wuite, J. (2019). Calving cycle of the Brunt Ice Shelf, Antarctica, driven by changes in ice shelf geometry. The Cryosphere, 13(10), 2771-2787. DOI: https://doi.org/10.5194/tc-13-2771-2019

Dell, R., Arnold, N., Willis, I., Banwell, A., Williamson, A., Pritchard, H., & Orr, A. (2020). Lateral meltwater transfer across an Antarctic ice shelf. The Cryosphere, 14(7), 2313-2330. DOI: https://doi.org/10.5194/tc-14-2313-2020

Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T., Ligtenberg, S. R., van den Broeke, M. R., & Moholdt, G. (2013). Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502(7469), 89-92. DOI: https://doi.org/10.1038/nature12567

Foster, J. L., Rango, A., Hall, D. K., Chang, A. T. C., Allison, L. J., & Diesen III, B. C. (1980). Snowpack monitoring in North America and Eurasia using passive microwave satellite data. Remote Sensing of Environment, 10(4), 285-298. DOI: https://doi.org/10.1016/0034-4257(80)90088-7

Hanna, E., Navarro, F. J., Pattyn, F., Domingues, C. M., Fettweis, X., Ivins, E. R., ... & Zwally, H. J. (2013). Ice-sheet mass balance and climate change. Nature, 498(7452), 51-59. DOI: https://doi.org/10.1038/nature12238

Hubbard, B., Luckman, A., Ashmore, D. W., Bevan, S., Kulessa, B., Kuipers Munneke, P., ... & Rutt, I. (2016). Massive subsurface ice formed by refreezing of ice-shelf melt ponds. Nature communications, 7(1), 11897. DOI: https://doi.org/10.1038/ncomms11897

Johnson, A., Hock, R., & Fahnestock, M. (2022). Spatial variability and regional trends of Antarctic ice shelf surface melt duration over 1979–2020 derived from passive microwave data. Journal of Glaciology, 68(269), 533-546. DOI: https://doi.org/10.1017/jog.2021.112

Nienow, P. W., Sole, A. J., Slater, D. A., & Cowton, T. R. (2017). Recent advances in our understanding of the role of meltwater in the Greenland Ice Sheet system. Current Climate Change Reports, 3, 330-344. DOI: https://doi.org/10.1007/s40641-017-0083-9

Pan, B. J., Gierach, M. M., Meredith, M. P., Reynolds, R. A., Schofield, O., & Orona, A. J. (2023). Remote sensing of sea surface glacial meltwater on the Antarctic Peninsula shelf. Frontiers in Marine Science, 10. DOI: https://doi.org/10.3389/fmars.2023.1209159

Peng, P., Zhu, Y., Zhong, M., Kang, K., Du, Z., & Yan, H. (2016). Ice Mass Variation in Antarctica from GRACE Over 2002–2011. Marine Geodesy, 39(2), 178-194. DOI: https://doi.org/10.1080/01490419.2016.1145609

Picard, G., Fily, M., & Gallée, H. (2007). Surface melting derived from microwave radiometers: a climatic indicator in Antarctica. Annals of Glaciology, 46, 29-34. DOI: https://doi.org/10.3189/172756407782871684

Rango, A. (1993). II. Snow hydrology processes and remote sensing. Hydrological Processes, 7(2), 121-138. DOI: https://doi.org/10.1002/hyp.3360070204

Rignot, E. (2006). Changes in ice dynamics and mass balance of the Antarctic ice sheet. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1844), 1637-1655. DOI: https://doi.org/10.1098/rsta.2006.1793

Thomas, R. H. (1979). Ice shelves: a review. Journal of Glaciology, 24(90), 273-286. DOI: https://doi.org/10.1017/S0022143000014799

Winther, J. G., & Dalen, O. (1996, July). Glaciological Studies of Melt-Sensitive Areas in Dronning Maud Land Antarctica, Using Landsat-Tm and ERS-1 SAR Data. In Remote Sensing of the Polar Environments (Vol. 391, p. 55).

Zwally, H. J., & Fiegles, S. (1994). Extent and duration of Antarctic surface melting. Journal of Glaciology, 40(136), 463-475. DOI: https://doi.org/10.1017/S0022143000012338

Downloads

Published

03-05-2024

Issue

Section

Research Articles

How to Cite

Spatio-Temporal Variations of Surface Melt Over Antarctic Ice Shelves using SCATSAT-1 Data. (2024). International Journal of Scientific Research in Science and Technology, 11(3), 23-28. https://doi.org/10.32628/IJSRST24112165

Similar Articles

1-10 of 58

You may also start an advanced similarity search for this article.