Spatio-Temporal Variations of Surface Melt Over Antarctic Ice Shelves using SCATSAT-1 Data
DOI:
https://doi.org/10.32628/IJSRST24112165Keywords:
Antarctica, Ice Shelf, Remote Sensing, Surface Melt, SCATSAT-1Abstract
Surface melting is a significant issue in Antarctica, affecting glacier movements and climate change. During summer, surface meltwaters from ponds circulate over ice shelves, causing mass loss. These melt water percolates down to shelf through crevasses and affects the iceshelf instability or break the ice shelf. Antarctica experiences a surface melting increase of around 3.5 million square kilometres for every one-degree rise in summer temperature. In this study we use remote-sensing data sets to assess the spatial and temporal distribution of surface melt over Antarctic ice shelves. We use microwave brightness temperature (Tb) to evaluate surface melting on ice shelves. Total four ice shelves from East and West Antarctica were selected for research due to their significant surface melting issues. The study estimated cumulative melt days over these ice shelves for year 2017 and 2018, and investigated melt variations over transect profiles. It was found that year 2018 showed increased amount in melt days in some regions of selected ice shelves.
Downloads
References
Baumhoer, C. A., Dietz, A. J., Dech, S., & Kuenzer, C. (2018). Remote sensing of Antarctic glacier and ice-shelf front dynamics—A review. Remote Sensing, 10(9), 1445. DOI: https://doi.org/10.3390/rs10091445
Chang, A. T., & Shiue, J. C. (1980). A comparative study of microwave radiometer observations over snowfields with radiative transfer model calculations. Remote Sensing of Environment, 10(3), 215-229. DOI: https://doi.org/10.1016/0034-4257(80)90025-5
Chang, T. C., Gloersen, P., Schmugge, T., Wilheit, T. T., & Zwally, H. J. (1976). Microwave emission from snow and glacier ice. Journal of Glaciology, 16(74), 23-39. DOI: https://doi.org/10.3189/S0022143000031415
De Rydt, J., Gudmundsson, G. H., Nagler, T., & Wuite, J. (2019). Calving cycle of the Brunt Ice Shelf, Antarctica, driven by changes in ice shelf geometry. The Cryosphere, 13(10), 2771-2787. DOI: https://doi.org/10.5194/tc-13-2771-2019
Dell, R., Arnold, N., Willis, I., Banwell, A., Williamson, A., Pritchard, H., & Orr, A. (2020). Lateral meltwater transfer across an Antarctic ice shelf. The Cryosphere, 14(7), 2313-2330. DOI: https://doi.org/10.5194/tc-14-2313-2020
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T., Ligtenberg, S. R., van den Broeke, M. R., & Moholdt, G. (2013). Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502(7469), 89-92. DOI: https://doi.org/10.1038/nature12567
Foster, J. L., Rango, A., Hall, D. K., Chang, A. T. C., Allison, L. J., & Diesen III, B. C. (1980). Snowpack monitoring in North America and Eurasia using passive microwave satellite data. Remote Sensing of Environment, 10(4), 285-298. DOI: https://doi.org/10.1016/0034-4257(80)90088-7
Hanna, E., Navarro, F. J., Pattyn, F., Domingues, C. M., Fettweis, X., Ivins, E. R., ... & Zwally, H. J. (2013). Ice-sheet mass balance and climate change. Nature, 498(7452), 51-59. DOI: https://doi.org/10.1038/nature12238
Hubbard, B., Luckman, A., Ashmore, D. W., Bevan, S., Kulessa, B., Kuipers Munneke, P., ... & Rutt, I. (2016). Massive subsurface ice formed by refreezing of ice-shelf melt ponds. Nature communications, 7(1), 11897. DOI: https://doi.org/10.1038/ncomms11897
Johnson, A., Hock, R., & Fahnestock, M. (2022). Spatial variability and regional trends of Antarctic ice shelf surface melt duration over 1979–2020 derived from passive microwave data. Journal of Glaciology, 68(269), 533-546. DOI: https://doi.org/10.1017/jog.2021.112
Nienow, P. W., Sole, A. J., Slater, D. A., & Cowton, T. R. (2017). Recent advances in our understanding of the role of meltwater in the Greenland Ice Sheet system. Current Climate Change Reports, 3, 330-344. DOI: https://doi.org/10.1007/s40641-017-0083-9
Pan, B. J., Gierach, M. M., Meredith, M. P., Reynolds, R. A., Schofield, O., & Orona, A. J. (2023). Remote sensing of sea surface glacial meltwater on the Antarctic Peninsula shelf. Frontiers in Marine Science, 10. DOI: https://doi.org/10.3389/fmars.2023.1209159
Peng, P., Zhu, Y., Zhong, M., Kang, K., Du, Z., & Yan, H. (2016). Ice Mass Variation in Antarctica from GRACE Over 2002–2011. Marine Geodesy, 39(2), 178-194. DOI: https://doi.org/10.1080/01490419.2016.1145609
Picard, G., Fily, M., & Gallée, H. (2007). Surface melting derived from microwave radiometers: a climatic indicator in Antarctica. Annals of Glaciology, 46, 29-34. DOI: https://doi.org/10.3189/172756407782871684
Rango, A. (1993). II. Snow hydrology processes and remote sensing. Hydrological Processes, 7(2), 121-138. DOI: https://doi.org/10.1002/hyp.3360070204
Rignot, E. (2006). Changes in ice dynamics and mass balance of the Antarctic ice sheet. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1844), 1637-1655. DOI: https://doi.org/10.1098/rsta.2006.1793
Thomas, R. H. (1979). Ice shelves: a review. Journal of Glaciology, 24(90), 273-286. DOI: https://doi.org/10.1017/S0022143000014799
Winther, J. G., & Dalen, O. (1996, July). Glaciological Studies of Melt-Sensitive Areas in Dronning Maud Land Antarctica, Using Landsat-Tm and ERS-1 SAR Data. In Remote Sensing of the Polar Environments (Vol. 391, p. 55).
Zwally, H. J., & Fiegles, S. (1994). Extent and duration of Antarctic surface melting. Journal of Glaciology, 40(136), 463-475. DOI: https://doi.org/10.1017/S0022143000012338
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.