Multiple Retinal Diseases Prediction for Enhancing the Identification of Diabetic Retinopathy

Authors

  • S. Haripriya Department of Computer Science and Engineering, Paavai Engineering College, Namakkal, Tamilnadu, India Author
  • Dr. D. Banumathy Professor, Department of Computer Science and Engineering, Paavai Engineering College, Namakkal, Tamilnadu, India Author
  • Dr. A. Jeyamurugan Professor, Department of Computer Science and Engineering, Paavai Engineering College, Namakkal, Tamilnadu, India Author
  • Dr. Madasamy Raja. G Professor, Department of Information Technology, Paavai Engineering College, Namakkal, Tamilnadu, India Author

DOI:

https://doi.org/10.32628/IJSRST24113115

Keywords:

Fundus Images, Deep Learning, Deep LearningConvolutional Neural Network Algorithm, Retinal Diseases

Abstract

The primary causes of vision impairment and blindness are retinal diseases, which include diabetic retinopathy, age-related macular degeneration, glaucoma, and retinal detachment. Correct and timely diagnosis of these illnesses is essential for efficient treatment and patient care. This abstract describes a novel use of convolutional neural networks (CNNs) for the diagnosis and prediction of various retinal diseases. A large dataset of retinal images covering a variety of retinal diseases is gathered and labelled with disease names in this study. To guarantee consistency and improve the model's capacity to pick up pertinent features, these photos go through a thorough preprocessing process. Techniques for data augmentation are used to diversify datasets more. The architecture of a CNN is intended for the categorization of retinal disorders. Convolutional layers are used in this architecture to extract features, and pooling layers are used to reduce dimensionality. Fully connected layers are then used to classify diseases. Using supervised learning methods, the model is trained on the annotated dataset, optimizing the loss function and keeping an eye on validation performance to avoid overfitting. On a different test dataset, the CNN model's performance is evaluated using a number of evaluation metrics, such as accuracy, precision, recall, F1-score, and the AUC-ROC score. Additionally, post-processing steps are used to eliminate predictions with low confidence, increasing the model's clinical usefulness.

Downloads

Download data is not yet available.

References

Hasan, Md Kamrul, et al. 'Diabetes prediction using ensembling of different machine learning classifiers.' IEEE Access 8 (2020): 76516-76531. DOI: https://doi.org/10.1109/ACCESS.2020.2989857

Tigga, Neha Prerna, and Shruti Garg. 'Prediction of type 2 diabetes using machine learning classification methods.' Procedia Computer Science 167 (2020): 706-716. DOI: https://doi.org/10.1016/j.procs.2020.03.336

Ramesh, Jayroop, Raafat Aburukba, and Assim Sagahyroon. 'A remote healthcare monitoring framework for diabetes prediction using machine learning.' Healthcare Technology Letters 8.3 (2021): 45-57. DOI: https://doi.org/10.1049/htl2.12010

Gupta, Himanshu, et al. 'Comparative performance analysis of quantum machine learning with deep learning for diabetes prediction.' Complex & Intelligent Systems 8.4 (2022): 3073-3087. DOI: https://doi.org/10.1007/s40747-021-00398-7

Ahmad, Hafiz Farooq, et al. 'Investigating health-related features and their impact on the prediction of diabetes using machine learning.' Applied Sciences 11.3 (2021): 1173. DOI: https://doi.org/10.3390/app11031173

Gayathri, S., et al. 'Automated binary and multiclass classification of diabetic retinopathy using haralick and multiresolution features.' IEEE Access 8 (2020): 57497-57504. DOI: https://doi.org/10.1109/ACCESS.2020.2979753

Al-Antary, Mohammad T., and Yasmine Arafa. 'Multi-scale attention network for diabetic retinopathy classification.' IEEE Access 9 (2021): 54190-54200. DOI: https://doi.org/10.1109/ACCESS.2021.3070685

Zhou, Yi, et al. 'DR-GAN: conditional generative adversarial network for fine-grained lesion synthesis on diabetic retinopathy images.' IEEE Journal of Biomedical and Health Informatics (2020).

Abdelmaksoud, Eman, et al. 'Automatic diabetic retinopathy grading system based on detecting multiple retinal lesions.' IEEE Access 9 (2021): 15939-15960. DOI: https://doi.org/10.1109/ACCESS.2021.3052870

Araújo, Teresa, et al. 'Data augmentation for improving proliferative diabetic retinopathy detection in eye fundus images.' IEEE Access 8 (2020): 182462-182474. DOI: https://doi.org/10.1109/ACCESS.2020.3028960

F. Jia-Wei, Z. Ru-Ru, L. Meng, H. Jia-Wen, K. Xiao-Yang, and C. Wen-Jun, 'Applications of deep learning techniques for diabetic retinal diagnosis,' J. AutomaticaSinica, vol. 47, no. 5, pp. 985–1004, 2021.

N. Gharaibeh, O. M. Al-Hazaimeh, A. Abu- Ein, and K. M. O. Nahar, 'A hybrid SVM Naïve–Bayes classifier for bright lesions recognition in eye fundus images,' Int. J. Electr. Eng. Informat., vol. 13, no. 3, pp. 530–545, Sep. 2021. DOI: https://doi.org/10.15676/ijeei.2021.13.3.2

O. M. Al-Hazaimeh, A. Abu-Ein, N. Tahat, M. Al-Smadi, and M. Al-Nawashi, 'Combining artificial intelligence and image processing for diagnosing diabetic retinopathy in retinal fundus images,' Int. J. Online Biomed. Eng., vol. 18, no. 13, pp. 131–151, Oct. 2022. DOI: https://doi.org/10.3991/ijoe.v18i13.33985

W. Ren, A. H. Bashkandi, J. A. Jahanshahi, AlHamad, D. Javaheri, and M. Mohammadi, 'Brain tumor diagnosis using a step-by-step methodology based on courtship learning-based water strider algorithm,' Biomed. Signal Process. Control, vol. 83, May 2023, Art. no. 104614, doi: 10.1016/j.bspc.2023.104614. DOI: https://doi.org/10.1016/j.bspc.2023.104614

D. Chen, W. Yang, L. Wang, S. Tan, J. Lin, and W. Bu, 'PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation,' PLoS ONE, vol. 17, no. 1, Jan. 2022, Art. no. e0262689, doi: 10.1371/journal.pone.0262689. DOI: https://doi.org/10.1371/journal.pone.0262689

J. Wei and Z. Fan, 'Genetic U-Net: Automatically designed deep networks for retinal vessel segmentation using a genetic algorithm,' 2020, arXiv:2010.15560.

A. Karaali, R. Dahyot, and D. J. Sexton, 'DR-VNet: Retinal vessel segmentation via dense residual UNet,' 2021, arXiv:2111.04739. DOI: https://doi.org/10.1007/978-3-031-09037-0_17

K. Aurangzeb, S. Aslam, M. Alhussein, R. Naqvi, M. Arsalan, and S. I. Haider, 'Contrast enhancement of fundus images by employing modified PSO for improving the performance of deep learning models,' IEEE Access, vol. 9, pp. 47930–47945, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3068477

M. Alhussein, K. Aurangzeb, and S. I. Haider, 'An unsupervised retinal vessel segmentation using Hessian and intensity-based approach,' IEEE Access, vol. 8, pp. 165056– 165070, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3022943

T. M. Khan, M. Alhussein, K. Aurangzeb, M. Arsalan, S. S. Naqvi, and S. J. Nawaz, 'Residual connection-based encoder decoder network (RCED-Net) for retinal vessel segmentation,' IEEE Access, vol. 8, pp. 131257– 131272, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3008899

K. Aurangzeb, R. S. Alharthi, S. I. Haider, and M. Alhussein, 'An efficient and light weight deep learning model for accurate retinal vessels segmentation,' IEEE Access, vol. 11, pp. 23107– 23118, 2023, doi: 10.1109/ACCESS.2022.3217782. DOI: https://doi.org/10.1109/ACCESS.2022.3217782

D. Jha, S. Ali, N. K. Tomar, H. D. Johansen, D. Johansen, J. Rittscher, M. A. Riegler, and P. Halvorsen, 'Real-time polyp detection, localization and segmentation in colonoscopy using deep learning,' IEEE Access, vol. 9, pp. 40496–40510, 2021, doi: 10.1109/ACCESS.2021.3063716. DOI: https://doi.org/10.1109/ACCESS.2021.3063716

J. Gao, Y. Jiang, H. Zhang, and F. Wang, 'Joint disc and cup segmentation based on recurrent fully convolutional network,' PLoS ONE, vol. 15, no. 9, pp. 1–23, 2020. DOI: https://doi.org/10.1371/journal.pone.0238983

M. Tabassum, T. M. Khan, M. Arsalan, S. S. Naqvi, M. Ahmed, H. A. Madni, and J. Mirza, 'CDED-Net: Joint segmentation of optic disc and optic cup for glaucoma screening,' IEEE Access, vol. 8, pp. 102733–102747, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.2998635

B. Liu, D. Pan, and H. Song, 'Joint optic disc and cup segmentation based on densely connected depthwise separable convolution deep network,' BMC Med. Imag., vol. 21, no. 1, Dec. 2021, Art. no. 14, doi: 10.1186/s12880-020- 00528-6 DOI: https://doi.org/10.1186/s12880-020-00528-6

M. Bansal, M. Kumar, and M. Kumar, '2D object recognition: A comparative analysis of SIFT, SURF and ORB feature descriptors,' Multimedia Tools Appl., vol. 80, no. 12, pp. 18839–18857, Feb. 2021, doi: 10.1007/s11042- 021-10646-0. DOI: https://doi.org/10.1007/s11042-021-10646-0

L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al- Dujaili, Y. Duan, O. Al-Shamma, J. Santamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan, 'Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions,' J. Big Data, vol. 8, no. 1, pp. 1–74, Mar. 2021 DOI: https://doi.org/10.1186/s40537-021-00444-8

A. Ding, Q. Chen, Y. Cao, and B. Liu, 'Retinopathy of prematurity stage diagnosis using object segmentation and convolutional neural networks,' in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1–6 DOI: https://doi.org/10.1109/IJCNN48605.2020.9207288

A. Z. H. Ooi, Z. Embong, A. I. A. Hamid, R. Zainon, S. L. Wang, T. F. Ng, R. A. Hamzah, S. S. Teoh, and H. Ibrahim, 'Interactive blood vessel segmentation from retinal fundus image based on Canny edge detector,' Sensors, vol. 21, no. 19, p. 6380, Sep. 2021. DOI: https://doi.org/10.3390/s21196380

Y. Liu, J. Tian, R. Hu, B. Yang, S. Liu, L. Yin, and W. Zheng, 'Improved feature point pair purification algorithm based on SIFT during endoscope image stitching,' Frontiers Neurorobotics, vol. 16, Feb. 2022, Art. no. 840594. DOI: https://doi.org/10.3389/fnbot.2022.840594

Downloads

Published

25-05-2024

Issue

Section

Research Articles

How to Cite

Multiple Retinal Diseases Prediction for Enhancing the Identification of Diabetic Retinopathy. (2024). International Journal of Scientific Research in Science and Technology, 11(3), 420-431. https://doi.org/10.32628/IJSRST24113115

Similar Articles

1-10 of 164

You may also start an advanced similarity search for this article.