Effect of Reaction Temperature on the Characterizations of Cobalt Ferrite Nanoparticles

Authors

  • Duong Hong Quyen School of Materials Science and Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam Author
  • Hoang Thi Kieu Nguyen School of Materials Science and Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam Author

DOI:

https://doi.org/10.32628/IJSRST2411349

Keywords:

Cobalt Ferrite, Nanoparticles, Temperature

Abstract

This study investigates the structural and magnetic properties of CoFe2O4 nanoparticles synthesized by the co-precipitation method at various reaction temperatures. X-ray diffraction (XRD) analysis confirms that the nanoparticles maintain a cubic spinel structure, with characteristic peaks stable across the 30 - 90°C temperature range, indicating that these temperatures do not affect the crystal structure. However, increasing the temperature results in larger particle sizes, higher saturation magnetization, and increased coercivity. The precipitate consistently exhibits characteristic soft magnetic properties, with no significant transitions in size or structure leading to drastic changes in magnetic behavior. These findings provide valuable insights for optimizing the synthesis process to control the structural and magnetic properties of CoFe2O4 nanoparticles, making them suitable for various practical applications.

Downloads

Download data is not yet available.

References

Y. Zhang and Z. Yanga. 2010. Journal of Magnetism and Magnetic materials. (Nov 2010), ISSN: 0304-8853, DOI:10.1016/j.jmmm.2010.06.047. DOI: https://doi.org/10.1016/j.jmmm.2010.06.047

T. Shahjuee and S. Morteza. 2017. Journal of Ultrafne Grained and Nanostructured Materials. (Dec 2017), ISSN: 2423-6845, DOI:10.22059/JUFGNSM.2017.02.04.

M.M. Cruz and L.P. Fereira. 2017. Journal of Alloys and Compounds. (May 2017), ISSN: 0925-8388, DOI:10.1016/j.jallcom.2017.01.297. DOI: https://doi.org/10.1016/j.jallcom.2017.01.297

B.L. Cushing and V.L. Kolesnichenko. 2004. Chemical Reviews. (Aug 2004), DOI: 10.1021/cr030027b. DOI: https://doi.org/10.1021/cr030027b

Kambiz Hedayati and Sara Azarakhsh. 2016. J. Nanostruct. (Apr 2016), DOI:10.7508/jns.2016.02.004

P. A. Vinosha and G. I. Nancy Mary. 2017. Mechanics, Materials Science & Engineering. (Apr 2017), ISSN 2412-5954, DOI:10.2412/mmse.36.49.466.

Adeela Nairan and Maaz Khan. 2016. Nanomaterials. (Apr 2016). ISSN 2079-4991 DOI:10.3390/nano6040073 DOI: https://doi.org/10.3390/nano6040073

Y. Il Kim, D. Kim, and C. S. Lee. 2003. Phys. B Condens. Matter. (Sep 2003), ISSN 0921-4526 DOI: 10.1016/S0921-4526(03)00322-3. DOI: https://doi.org/10.1016/S0921-4526(03)00322-3

C. R. Stein, M. T. S. Bezerra, G. H. A. Holanda, J. André-Filho. 2018. AIP Adv., (Dec 2017) ISSN 2158-3226 DOI: 10.1063/1.5006321. DOI: https://doi.org/10.1063/1.5006321

C. H. Chia et al. 2010. Ceram. Int. (Oct 2010) ISSN 0272-8842, DOI: 10.1016/j.ceramint.2009.10.001. DOI: https://doi.org/10.1016/j.ceramint.2009.10.001

T. Prabhakaran, R. V. Mangalaraja, J. C. Denardin, and J. A. Jiménez. 2017. Ceram. Int., (Jan 2017). ISSN 0272-8842 DOI: 10.1016/j.ceramint.2017.01.092. DOI: https://doi.org/10.1016/j.ceramint.2017.01.092

Downloads

Published

29-06-2024

Issue

Section

Research Articles

How to Cite

Effect of Reaction Temperature on the Characterizations of Cobalt Ferrite Nanoparticles . (2024). International Journal of Scientific Research in Science and Technology, 11(3), 773-776. https://doi.org/10.32628/IJSRST2411349

Similar Articles

1-10 of 36

You may also start an advanced similarity search for this article.