Structural Properties of Cs1+ Doped H3PMo12O40 Nanocrystalline Polyoxometalate Thin Films
DOI:
https://doi.org/10.32628/IJSRST24114140Keywords:
Cs doped PMA, MACBD, TGDTA, XRD, FTIR, SEM, EDAXAbstract
The microwave assisted chemical bath deposition (MA-CBD) technique were used to deposite nanocrystalline thin films of polyoxometalates like phosphomolybdic acid (PMA) (H3PMo12O40) and Cesium (Cs+) doped phosphomolybdic acid (Cs-PMA) (Cs3-PMo12O40). Thermo gravimetric and Differential thermal analysis (TGDTA), Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray analysis (EDAX), X-ray diffractometry (XRD) and Scanning electron microscopy (SEM) tools are used for the thermal, structural, morphological and compositional analysis of microwave treated H3PMo12O40 and Cs3- PMo12O40 thin films. The completion of decomposition process at 600 oC of Cs3-PMo12O40 compound is confirmed from TGDTA analysis. The polycrystalline spinel cubic crystal structure of H3PMo12O40 and Cs3-PMo12O40 thin films were confirmed from X-ray diffractometer. The crystallite size of H3PMo12O40 and Cs3-PMo12O40 compound found to be in the range of 50 - 53 nm. The formation of H3PMo12O40 and Cs3-PMo12O40 materials were confirmed from the presence of main four absorption peaks observed in the range from 800 cm-1 to 1100 cm-1. The SEM microphotographs analysis identify the microwave assisted H3PMo12O40 and Cs3-PMo12O40 films have spherical shaped porous nanocrystalline morphology. The grain size of H3PMo12O40 and Cs3-PMo12O40 synthesized material found to be in the range of 10 - 12 A˚ The stoichiometric preparation of H3PMo12O40 and Cs3-PMo12O40 thin films with presence of P, Mo, O and Cs peaks of metal ions is observed from EDAX spectra.
Downloads
References
T. Li, W. Yin, S. Gao, Y. Sun, P. Xu, S. Wu, H. Kong, G. Yang, G. Wei, Nanomater. 2022, 12, 982. DOI: https://doi.org/10.3390/nano12060982
J. Liu, L. Zhang, J. Fan, J. Yu, Small. 2022, 18, 2104984. DOI: https://doi.org/10.1002/smll.202202248
H. Yuan, N. Li, W. Fan, H. Cai, D. Zhao, Adv. Sci. 2022, 9, 2104374. DOI: https://doi.org/10.1002/advs.202104374
M. Horn, A. Singh, S. Alomari, S. Goberna-Ferrón, R. Benages-Vilau, N. Chodankar, N. Motta, Energy Env. Sci. 2021, 14, 1652-1700. DOI: https://doi.org/10.1039/D0EE03407J
B. Patil, J. Indian. Chem. Soc. 2022, 100, 100811. DOI: https://doi.org/10.1016/j.jics.2022.100811
D. Dubal, B. Ballesteros, A. Mohite, P. Gómez‐Romero, ChemSusChem. 2017, 10, 731-737. DOI: https://doi.org/10.1002/cssc.201601610
D. Dubal, J. Suarez-Guevara, D. Tonti, E. Enciso, P. Gomez-Romero, J. Mater. Chem. A. 2015, 3, 23483-23492. DOI: https://doi.org/10.1039/C5TA05660H
M. Pope, A. Müller, Angew. Chem. Int. Ed. Engl. 1991, 30, 34-48. DOI: https://doi.org/10.1002/anie.199100341
Y. Cui, C. Lieber, Sci. 2001, 291, 851-853. DOI: https://doi.org/10.1126/science.291.5505.851
I. Kozhevnikov, Chem. Rev. 1998, 98, 171-198. DOI: https://doi.org/10.1021/cr960400y
M. Sadakane, E. Steckhan, Chem. Rev. 1998, 98, 219-238. DOI: https://doi.org/10.1021/cr960403a
I. Weinstock, Chem. Rev. 1998, 98, 113-170. DOI: https://doi.org/10.1021/cr9703414
T. Yamase, Chem. Rev. 1998, 98, 307-325. DOI: https://doi.org/10.1021/cr9604043
X. Wang, C. Xu, H. Lin, G. Liu, J. Luan, Z. Chang, RSC Adv., 2013, 3, 3952 DOI: https://doi.org/10.1039/c2ra22855f
L. Li, W. Li, C. Sun, L. Li, Electroanalysis. 2002, 14, 368-375. DOI: https://doi.org/10.1002/1521-4109(200203)14:5<368::AID-ELAN368>3.0.CO;2-I
H. Ma, T. Dong, G. Wang, W. Zhang, F. Wang, X. Wang, Electroanalysis. 2006, 18, 2475-2480. DOI: https://doi.org/10.1002/elan.200603657
B. Huang, L. Wang, K. Shi, Z. Xie, L. Zheng, J. Electroanal. Chem. 2008, 615, 19-24. DOI: https://doi.org/10.1016/j.jelechem.2007.11.022
F. Alshorifi, D. Tobbala, S. El-Bahy, M. Nassan, R. Salama, Catal. Commun. 2022, 169, 106479. DOI: https://doi.org/10.1016/j.catcom.2022.106479
Z. Yu, X. Chen, Y. Zhang, H. Tu, P. Pan, S. Li, Y. Han, Chem. Eng. J. 2022, 430, 133059. DOI: https://doi.org/10.1016/j.cej.2021.133059
L. Vilà-Nadal, L. Cronin, Nature Rev. Mater. 2017, 2, 1-15. DOI: https://doi.org/10.1038/natrevmats.2017.54
G. Zhu, L. Pan, T. Xu, Z. Sun, J. Electro. Chem. 2011, 659, 2, 205-208. DOI: https://doi.org/10.1016/j.jelechem.2011.05.018
I. Gur, N. Fromer, M. Geier, A. Alivisatos, Sci. 2005, 310, 462-465. DOI: https://doi.org/10.1126/science.1117908
S. Mane, N. Patil, A. Sargar, P. Bhosale, Mater. Chem. Phy., 2008, 112, 74-77. DOI: https://doi.org/10.1016/j.matchemphys.2008.05.015
S. Nadaf, S. Patil, V. Kalantre, S. Mali, C. Hong, S. Mane, P. Bhosale, J. Mater. Sci.: Mater. Electron. 2020, 31, 18105-18119. DOI: https://doi.org/10.1007/s10854-020-04361-z
S. Mane, R. Kharade, R. Mane, S. Gawale, S. Patil, P. Bhosale, Dig. J. Nanomater. Biostructures. 2011, 6, 451-466
M. Alotaibi, M. Bakht, A. Alharthi, M. Geesi, M. Alshammari, Y. Riadi, Sustain. Chem. Pharm., 2020, 17, 100279 DOI: https://doi.org/10.1016/j.scp.2020.100279
N. Tahmasebi, Z. Zadehdabagh, J. Aust. Ceram. Soc. 2020, 56, 49-57. DOI: https://doi.org/10.1007/s41779-019-00412-9
J. Dias, E. Caliman, S. Dias, Microporous Mesoporous Mater. 2004, 76, 221-232. DOI: https://doi.org/10.1016/j.micromeso.2004.08.021
H. Eom, D. Lee, S. Kim, S. Chung, Y. Hur, K. Lee, Fuel, 2014, 126, 263-270. DOI: https://doi.org/10.1016/j.fuel.2014.02.060
W. Sienicki, Mater. Chem. Phy. 2001, 68, 119-123. DOI: https://doi.org/10.1016/S0254-0584(00)00285-6
R. Xiong, M. Tian, H. Liu, W. Tang, M. Jing, J. Sun, Q. Kou, D. Tian, J. Shi, Mater. Sci. Eng. B. 2001, 87, 191-196. DOI: https://doi.org/10.1016/S0921-5107(01)00740-1
K. Khot, S. Mali, N. Pawar, R. Kharade, R. Mane, V. Kondalkar, P. Patil, New J. Chem. 2014, 38, 5964-5974. DOI: https://doi.org/10.1039/C4NJ01319K
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.