A Review of Image Denoising Using Fuzzy and Wiener Filters in the Wavelet Domain
DOI:
https://doi.org/10.32628/IJSRST2411430Keywords:
ATMED, ATMEV, RMSE, PSNR, Wavelet TransformAbstract
This paper focuses on image denoising using fuzzy wavelet domain transforms, reviewing recent advancements in this area. Wavelet transforms have become a powerful tool in image denoising, with one of the most widely used techniques involving thresholding wavelet coefficients. The paper proposes a hybrid denoising method that combines the wavelet transform, median filtering, and nonlinear diffusion. Additionally, a novel fuzzy filter is introduced to reduce additive noise in digital color images. Two distinct image denoising techniques are discussed: the first employs an Asymmetrical Triangular Moving Average Filter (TMAV) with a HAAR wavelet transform, while the second utilizes an Asymmetrical Triangular Median Filter (TMED) with the HAAR wavelet transform.
Downloads
References
Sigit Auliana, Meishi Nur Janah, Gagah Dwiki Putra Aryono “Multi-Domain Medical Image Enhancement Through Fuzzy and Regression Neural Network Approach” Vol 4, No 6, June 2024, Hal 2733-2743.
Nada Jasim Habeeb “Medical Image Denoising with Wiener Filter and High Boost Filtering” Iraqi Journal of Science, 2023, Vol. 64, No. 6, pp: 3123-3135. DOI: https://doi.org/10.24996/ijs.2023.64.6.40
Caixia Liu 1,2 and Li Zhang” A Novel Denoising Algorithm Based on Wavelet and Non-Local Moment Mean Filtering”, Volume 12, Issue 6, 2023. DOI: https://doi.org/10.3390/electronics12061461
Nitin, Satinder Bal Gupta “A Hybrid Image Denoising Method Based on Discrete Wavelet Transformation with Pre-Gaussian Filtering” Volume: 15, Issue: 43, Pages: 2317-2324. DOI: https://doi.org/10.17485/IJST/v15i43.1570
Amarjeet Kumar Ghosh and Dr. A.A. Ansar “To Analysis and Implement Image De-Noising Using Fuzzy and Wiener Filter in Wavelet Domain” Volume 8(3), ISSN: 2394-9333 (2022).
Ahmed Abdulmaged Ismael , Muhammet Baykara, “Digital Image Denoising Techniques Based on Multi-Resolution Wavelet Domain with Spatial Filters” Vol. 38, No. 3, June, 2021, pp. 639-651 2021. DOI: https://doi.org/10.18280/ts.380311
Ali Arshaghi , Mohsen Ashourian , “Denoising Medical Images Using Machine Learning, Deep Learning Approaches”.2021. DOI: https://doi.org/10.2174/1573405616666201118122908
Hadi Salehi, Javad Vahidi, Thabet Abdeljawad, Aziz Khan and Seyed Yaser Bozorgi Rad, “A SAR Image Despeckling Method Based on an Extended Adaptive Wiener Filter and Extended Guided Filter” Volume 12 ,Issue 15, 21 February 2020. DOI: https://doi.org/10.3390/rs12152371
Muhammad Abdulghani Taha, Melike Şah and Cem Direkoğlu , Ganesh Babu Loganathan, “Adaptive Wiener Filter And Non Linera Diffusion Based Deblurring And Denoising Images” ISSN- 2394-5125 Vol 7, Issue 3, 2020.
Rini Smita Thakur, Ram Narayan Yadav , Lalita Gupta1 " State-of-art analysis of image denoising methods using convolutional neural networks Vol. 13 Iss. 13, pp. 2367-2380 2019. DOI: https://doi.org/10.1049/iet-ipr.2019.0157
Sridhar, S.: ‘Digital image processing’ (Oxford Publications, New Delhi, India, 2016, 2nd edn.), pp. 1–7
Boyat, A., Joshi, B.: ‘A review paper: noise models in digital image processing’, Signal Image Process., Int. J., 2015, 6, (2), pp. 63–75 DOI: https://doi.org/10.5121/sipij.2015.6206
Sontakke, M., Kulkarni, M.: ‘Different types of noises in images and noise removing technique’, Int. J. Adv. Technol. Eng. Sci., 2015, 3, (1), pp. 102–115
Tomasi, C., Manduchi, R.: ‘Bilateral filtering for gray and color images’. IEEE 6th Int. Conf. on Computer Vision, Mumbai, India, 1998, pp. 839–846
Michael, E.: ‘On the origin of the bilateral filter and ways to improve it’, IEEE Trans. Image Process., 2002, 11, (10), pp. 1141–1151 DOI: https://doi.org/10.1109/TIP.2002.801126
Perona, P., Malik, J.: ‘Scale-space and edge detection using anisotropic diffusion’, IEEE Trans. Pattern Anal. Mach. Intell., 1990, 12, (7), pp. 629– 639 DOI: https://doi.org/10.1109/34.56205
Buades, A., Bartomeu, C., Morel, J., et al.: ‘A review of image denoising algorithms with a new one’, Multiscale. Model. Simul., 2005, 4, (2), pp. 490– 530 DOI: https://doi.org/10.1137/040616024
Awate, P., Whitaker, R.: ‘Unsupervised, information theoretic, adaptive image filtering for restoration’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 41, (10), pp. 2305–2318
Kostadin, D., Foi, A., Katkovnik, V., et al.: ‘Image denoising by sparse 3-D transform-domain collaborative filtering’, IEEE Trans. Image Process., 2007, 16, (8), pp. 2080–2095 DOI: https://doi.org/10.1109/TIP.2007.901238
Milanfar, P.: ‘A tour of modern image filtering: new insights and methods, both practical and theoretical’, IEEE Signal Process. Mag., 2012, 30, (1), pp. 106–128. DOI: https://doi.org/10.1109/MSP.2011.2179329
Barash, D.: ‘Fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (6), pp. 844–847 DOI: https://doi.org/10.1109/TPAMI.2002.1008390
Danielyan, A., Katkovnik, V., Egiazarian, K.: ‘BM3D frames and variational image deblurring’, IEEE Trans. Image Process., 2012, 21, (4), pp. 1715–1728 DOI: https://doi.org/10.1109/TIP.2011.2176954
Dautov, C., Ozerdem, M.: ‘Wavelet transform and signal denoising using wavelet method’. 26th Signal Processing and Communications Applications Conf. (SIU), Izmir, 2018, pp. 1–4 DOI: https://doi.org/10.1109/SIU.2018.8404418
Zhang, M., Desrosiers, C.: ‘Image denoising based on sparse representation and gradient histogram’, IET Image Process., 2017, 11, (1), pp. 54–63 DOI: https://doi.org/10.1049/iet-ipr.2016.0098
Li, M.: ‘An improved non-local filter for image denoising’. Int. Conf. on Information Engineering and Computer Science, Wuhan, 2009, pp. 1–4 DOI: https://doi.org/10.1109/ICIECS.2009.5363902
Malfait, M., Roose, D.: ‘Wavelet-based image denoising using a Markov random field a priori model’, IEEE Trans. Image Process., 1997, 6, (4), pp. 549–565 DOI: https://doi.org/10.1109/83.563320
McCann, M., Jin, K., Unser, M.: ‘Convolutional neural networks for inverse problems in imaging: a review’, IEEE Signal Process. Mag., 2017, 34, (6), pp. 85–95 DOI: https://doi.org/10.1109/MSP.2017.2739299
Haykin, S.: ‘Neural networks: a comprehensive foundation’ (Prentice-Hall, Singapore, 1999, 2nd edn.)
Bengio, Y.: ‘Learning deep architectures for AI’, Found. Trends Mach. Learn., 2009, 2, (1), pp. 127–131 DOI: https://doi.org/10.1561/2200000006
Krizhevsky, A., Sutskever, I., Hinton, G.: ‘Image net classification with deep convolutional neural networks’. Proc. of Int. Conf. of Neural Information Processing Systems, LakeTahoe, NV, 2012, pp. 1097–1105
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.