3D-MTF of Computed Tomography (CT) Images Using a 3D-Wire Phantom: The Impact of Tube Voltage Variations

Authors

  • Yuliana Lakapu Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof Soedarto SH, Tembalang, Semarang 50275, Indonesia Author
  • Choirul Anam Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof Soedarto SH, Tembalang, Semarang 50275, Indonesia Author
  • Wahyu S. Budi Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof Soedarto SH, Tembalang, Semarang 50275, Indonesia Author
  • Betha Sri Wulandari Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof Soedarto SH, Tembalang, Semarang 50275, Indonesia Author

DOI:

https://doi.org/10.32628/IJSRST24114311

Keywords:

3D MTF, tube voltage, computed tomography

Abstract

Key exposure factors, such as tube voltage are critical in CT examinations as they will impact the quality of the images produced by the CT scan. Spatial resolution is one of the parameters that can be used to determine image quality. The purpose of this study is to evaluate the impact of tube voltage in spatial resolution in three axes (x, y, z) using an in-house wire phantom. The results show that MTF 10% in the axial plane (x-y) is approximately identical (approximately 0,70 mm) for various tube voltages 80, 100, 120, and 140 kV. The same results were observed at the coronal and sagittal plane (z-axis), although they exhibit more variation than axial plane the differences in values between tube voltages are not significant.

Downloads

Download data is not yet available.

References

Anam C, Fujibuchi T, Budi WS, Haryanto F, Dougherty G. An algorithm for automated modulation transfer function measurement using an edge of a PMMA phantom: Impact of field of view on spatial resolution of CT images. J Appl Clin Med Phys. 2018;19(6):244-252. doi:10.1002/acm2.12476 DOI: https://doi.org/10.1002/acm2.12476

Setiawan, A.M.B., Anam, C., Hidayanto, E., Sutanto, H., Naufal, A. & Dougherty, G. Comparison of noise-power spectrum and modulation-transfer function for CT images reconstructed with iterative and deep learning image reconstructions: An initial experience study. Polish Journal of Medical Physics and Engineering, 2023, Sciendo, vol. 29 no. 2, pp. 104-112. https://doi.org/10.2478/pjmpe-2023-0012 DOI: https://doi.org/10.2478/pjmpe-2023-0012

Anam C, Naufal A, Sutanto H, Adi K, Dougherty G. Impact of Iterative Bilateral Filtering on the Noise Power Spectrum of Computed Tomography Images. Algorithms. 2022; 15(10):374. https://doi.org/10.3390/a15100374 DOI: https://doi.org/10.3390/a15100374

Stoyanov D, &Vassileva, J. Influence of exposure parameters on patient dose and image noise in computed tomography. Polish J Med Phys Eng. 2009;15(4):215-226. DOI: https://doi.org/10.2478/v10013-009-0021-9

Sanders J, Hurwitz L, Samei E. Patient-specific quantification of image quality: An automated method for measuring spatial resolution in clinical CT images. Med Phys. 2016;43(10):5330. doi:10.1118/1.4961984 DOI: https://doi.org/10.1118/1.4961984

Varghese AP, Naik S, Asrar Up Haq Andrabi S, Luharia A, Tivaskar S. Enhancing Radiological Diagnosis: A Comprehensive Review of Image Quality Assessment and Optimization Strategies. Cureus. 2024;16(6):e63016. Published 2024 Jun 24. doi:10.7759/cureus.63016 DOI: https://doi.org/10.7759/cureus.63016

Athanasiou L, Fotiadis D I, Michalis L K. Atherosclerotic Plaque Characterization Methods Based on Coronary Imaging. Academic Press. 2017 DOI: https://doi.org/10.1016/B978-0-12-804734-7.00006-3

Anam C, Fujibuchi T, Haryanto F, et al. Automated MTF measurement in CT images with a simple wire phantom. Polish J Med Phys Eng. 2019;25(3):179-187 DOI: https://doi.org/10.2478/pjmpe-2019-0024

Boone JM. Determination of the presampled MTF in computed tomography. Med Phys. 2001;28(3):356-360. doi:10.1118/1.1350438 DOI: https://doi.org/10.1118/1.1350438

Priti Madhav, Randolph L. McKinley, Ehsan Samei, James E. Bowsher, Martin P. Tornai, A novel method to characterize the MTF in 3D for computed mammotomography, Proc. SPIE 6142, Medical Imaging 2006: Physics of Medical Imaging, 61421Y (2 March 2006); https://doi.org/10.1117/12.653393 DOI: https://doi.org/10.1117/12.653393

Nakaya Y, Kawata Y, Niki N, Umetatni K, Ohmatsu H, Moriyama N. A method for determining the modulation transfer function from thick microwire profiles measured with x-ray microcomputed tomography. Med Phys. 2012;39(7):4347-4364. doi:10.1118/1.472971 DOI: https://doi.org/10.1118/1.4729711

Kayugawa A, Ohkubo M, Wada S. Accurate determination of CT point-spread-function with high precision. J Appl Clin Med Phys. 2013;14(4):3905. Published 2013 Jul 8. doi:10.1120/ jacmp. v14i4.3905 DOI: https://doi.org/10.1120/jacmp.v14i4.3905

Hsieh J, Flohr T. Computed tomography recent history and future perspectives. J Med Imaging (Bellingham). 2021;8(5):052109. doi:10.1117/1.JMI.8.5.052109 DOI: https://doi.org/10.1117/1.JMI.8.5.052109

Murakami Y, Kakeda S, Kamada K, et al. Effect of tube voltage on image quality in 64-section multidetector 3D CT angiography: Evaluation with a vascular phantom with superimposed bone skull structures. AJNR Am J Neuroradiol. 2010;31(4):620-625. doi:10.3174/ajnr.A1871 DOI: https://doi.org/10.3174/ajnr.A1871

Downloads

Published

10-12-2024

Issue

Section

Research Articles

How to Cite

3D-MTF of Computed Tomography (CT) Images Using a 3D-Wire Phantom: The Impact of Tube Voltage Variations. (2024). International Journal of Scientific Research in Science and Technology, 11(6), 485-489. https://doi.org/10.32628/IJSRST24114311

Most read articles by the same author(s)

Similar Articles

1-10 of 22

You may also start an advanced similarity search for this article.