Encrypting Message Using the Knapsack Cryptosystem Based on Elgamal
DOI:
https://doi.org/10.32628/IJSRST24114321Keywords:
Cryptography, cryptosystem, ElGamal, Knapsack problem, super increasing vector, CVP, subset sum problemAbstract
In this article, we demonstrates how to make stronger the encrypted message being sent by use of ElGamal so only the proposed receiver of the message is efficient to decode the message. Our result is also illustrated with help of an mathematical example with calculation. We also show that our proposed scheme process faster than RSA scheme.
Downloads
References
M. Hellman and R. Merkle, Hiding information and signatures in trapdoor knap- sacks, IEEE Trans.Inform.Theory,volume24(1978),525-530. DOI: https://doi.org/10.1109/TIT.1978.1055927
A. Menezes, P.vanOorschot and S.Vanstone, Handbook of Applied Cryptography, CRC Press (1996).
W. Diffie and M. Hellman, New directions in cryptography, IEEETrans. Inform. Theory, volume 22 (1976), 644-654. DOI: https://doi.org/10.1109/TIT.1976.1055638
J. Hoffstein, J. Pipher and J. H. Silverman, An Introduction to Mathematical Cryptography, Undergraduate Texts in Mathematics, Springer (2008). DOI: https://doi.org/10.1007/978-0-387-77993-5_6
Ashish Agarwal, Encrypting Message using the Merkle Hellman Knapsack Cryptosystem, IJCSNS International Journal of Computer Science and Net-work Security volume 11 (2011), 12-14.
Richard M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, Raymond E. Miller and James W.Thatcher(eds.) Plenum Press, NY, 1972.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.