Measurements of Water-Equivalent Diameter (Dw) Based on Localizer Radiograph for Tube Voltage Variation
DOI:
https://doi.org/10.32628/IJSRST24114333Keywords:
CT, step-wedge, water-equivalent thickness, water-equivalent diameter, SSDEAbstract
This study aims to investigate the step-wedge phantom for calibrating CT localizer radiograph for different tube voltages. The in-house step-wedge phantom has five steps with thicknesses of 6, 12, 18, 24, and 30 cm. The phantom was scanned using a 64-slice Siemens Definition AS CT scanner at tube voltages of 80, 100, 120, 140, and 160 kVp. The relationship between pixel values (PV) and water-equivalent thickness (tw) was obtained for different step thicknesses. This relationship was used to calibrate the CT localizer radiograph for measuring water-equivalent (Dw) and size-specific dose estimate (SSDE). The results of Dw and SSDE from the localizer radiograph were compared with those calculated from axial CT images. It is found that tube voltage (kVp) can affect the accuracy of Water-Equivalent Diameter (DW) measurements in localizer radiograph imaging. Lower tube voltages tend to increase image contrast but may also increase noise, while higher voltages can reduce contrast while producing images with better penetration and higher radiation doses.
Downloads
References
American College of Radiology (ACR). 2017. American College of Radiology CT Accreditation Program Testing Instructions. Revisi 2017. New York: American Institute of Physics.
Anam, C., Fujibuchi, T., Toyoda, T., Sato, N., Haryanto, F., Widita, R., Arif, I., & Dougherty, G. (2018). A simple method for calibrating pixel values of the CT localizer radiograph for calculating water-equivalent diameter and size-specific dose estimate. Radiation Protection DOI: https://doi.org/10.1093/rpd/ncx241
Anam, C., Haryanto, F., Widita, R., Arif, I., Dougherty, G. and McLean, D. The impact of patient table on size-specific dose estimate (SSDE). Australas. Phys. Eng. Sci. Med. 40, 153–158 (2017). DOI: https://doi.org/10.1007/s13246-016-0497-z
Asiah, R. H., Sutanto, H., Anam, C., Arifin, Z., Bahrudin, & Hilmawati, R. (2021). Development of In-House Head Computed Tomography Dose Index Phantoms Based on Polyester-Resin Materials. Iranian Journal of Medical Physics, 18(4), 255–262. https://doi.org/10.22038/ijmp.2020.46387.1728
Ikuta, I. et al. (2014) ‘Estimating patient dose from x-ray tube output metrics: Automated measurement of patient size from CT images enables largescale size-specific dose estimates’, Radiology, 270(2), pp. 472–480. doi:10.1148/radiol.13122727 DOI: https://doi.org/10.1148/radiol.13122727
Kuriyama, K., Matsubara, K., Hisahara, S., Nagata, Y., Nosaka, R., Goto, R., Yanano, N., Shimizu, K., & Shoji, T. (2020). Effect of table height displacement and patient center deviation on size-specific dose estimates calculated from computed tomography localizer radiographs. Physical and Engineering Sciences in Medicine, 43(2), 665–672. https://doi.org/10.1007/s13246-020-00874-3 DOI: https://doi.org/10.1007/s13246-020-00874-3
Li, X., Shi, J. Q., Zhang, D., Singh, S., Padole, A., Otrakji, A., Kalra, M. K., Xu, X. G., & Liu, B. (2015). A new technique to characterize CT scanner bow-tie filter attenuation and applications in human cadaver dosimetry simulations. Medical Physics, 42(11), 6274–6282. https://doi.org/10.1118/1.4932364 DOI: https://doi.org/10.1118/1.4932364
Li, B., Behrman, R. H. and Norbash, A. M. Comparison of topogram-based body size indices for CT dose consideration and scan protocol optimization. Med. Phys. 39, 3456–3465 (2012). DOI: https://doi.org/10.1118/1.4718569
McCollough, C., Bakalyar, D. M., Bostani, M., Brady, S., Boedeker, K., Boone, J. M., Heather Chen-Mayer, H., Christianson, O. I., Leng, S., Li, B., McNitt-Gray, M. F., Nilsen, R. A., Supanich, M. P., & Wang, J. (n.d.). Use of Water Equivalent Diameter for Calculating Patient Size and Size-Specific Dose Estimates (SSDE) in CT: The Report of AAPM Task Group 220.
Rif’ah, Sitti M. An in-house step-wedge phantom for the calibration of pixel values in CT localizer radiographs for water-equivalent diameter measurement.2023. Polish Journal of Medical Physics and Engineering The Journal of Polish Society of Medical Physics ISSN 1898-0309, doi: 10.2478/pjmpe-2023-0006 DOI: https://doi.org/10.2478/pjmpe-2023-0006
Soesilo Wibowo, A., Wibowo, G. M., Prabowo, A., H., Anwar, S., M.). Analisis of kv and mas change to image quality and radiation dose on multislice computed tomography examination of abdominal tumor in radiology installation of dr. Saiful anwar malang hospital. In JImeD (Vol. 2, Issue 1).
Strauss, K. J. and Goske, M. J. Estimated pediatric radiation dose during CT. Pediatr. Radiol. 41, S472–S482 (2011). DOI: https://doi.org/10.1007/s00247-011-2179-z
Terashima M, Mizonobe K, Date H. Determination of appropriate conversion factors for calculating size-specific dose estimates based on X-ray CT scout images after miscentering correction. Radiol Phys Technol. 2019;12(3):283-289. https://doi.org/10.1007/s12194- 019-00519-5 DOI: https://doi.org/10.1007/s12194-019-00519-5
Wanara, N., Hamdi, M. and Sinuraya Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau, S. (2020) ‘Estimasi Nilai Dosis Radiasi Efektif Pasien Dari Citra Medis Ct Scan Asteion Multi 32 Slice Bagian Abdomen’, Kfi), 17(2), p. 2020. DOI: https://doi.org/10.31258/jkfi.17.2.80-86
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.