A Complete Review on : Liposomes
DOI:
https://doi.org/10.32628/IJSRST24115113Keywords:
Liposomes, Phospholipids, Lamellarity, Drug Delivery System, Using Liposomes, Structural Components, Commercialized ProductAbstract
Liposomes are a drug delivery system that is adaptable and optimistic. The benefits of liposomes over other drug delivery systems include site-targeting, prolonged or controlled release, protection of drugs from degradation and clearance, higher therapeutic effects, and fewer toxic adverse effects. As effective drug carriers in pre-clinical and clinical studies, liposomes provide a wide range of benefits and uses. Additionally, issues pertaining to liposomal stabilization, efficient targeting techniques, and some of their drawbacks were discussed. Formulation of liposomes has enabled the modification of drug biodistribution of many drugs, hence improving the therapeutic properties of those compounds.
Downloads
References
De Marie S, Janknegt R, Bakker-Woudenberg IAJM. Clinical use of liposomal and lipid-complexed amphotericin B. J. Antimicrob. Chemother.1994;33: 907-916.
Obanewa OA, Oyeniran OT. Development and estimation of anti-inflammatory activity of topical etoricoxibemulgel by carrageenan induced paw oedema method. Universal Journal of Pharmaceutical Research. 2019; 4(3): 22-26.
nech RO, Kheadr EE, Laridi R, Lacroix C, Fliss I: Inhibition of Listeria innocua in cheddar cheeseby addition of nisin[3] Mishra H, Chauhan V, Kumar K, Teotia D, A comprehensive review on Liposomes: a novel drug delivery system, Journal of Drug Delivery and Therapeutics. 2018; 8(6):400-404 DOI: https://doi.org/10.22270/jddt.v8i6.2071
Dingwoke John Emeka Francis, Felix Sunday Yusuf. Development and evaluation of nanosponges loaded extended release tablets of lansoprazole. Universal Journal of Pharmaceutical Research. 2019; 4(1): 24-28.
Alving C.R. Macrophages, as targets for delivery of liposome encapsulated antimicrobial agents. Adv Drug Delivery Rev, (1998); 2. DOI: https://doi.org/10.1016/0169-409X(88)90007-5
C. J. Chapman Allison, A.C., Gregoriadis, G, 1974. Liposomes as immunological adjuvant. Nature 252, 252. DOI: https://doi.org/10.1038/252252a0
Deamer, D. and Uster, P., Liposome preparation methods and monitoring liposome fusion. In: Baserga, R., Croce, C. and Royeza, G. (Eds.), Introduction of Macromolecules into viable Mammalian Cells, Alan R. Liss, New York, 1980,pp. 205 220.
de Marie, S., Janknegt, R., Bakker-Woudenberg, I.A.J.M.,1994. Clinical use of liposomal and lipid-complexed amphotericin B. J. Antimicrob. Chemother. 33, 907-916 Z in liposomes or by in situ production in mixed culture. Applied Environ Microbiol 2002, 68:3683–3690. DOI: https://doi.org/10.1093/jac/33.5.907
Shehata T, Ogawara K, Higaki K, Kimura T: Prolongation of residence time of liposome by surfacemodification with mixture of hydrophilic polymers. Int J Pharm 2008, 359:272–279. DOI: https://doi.org/10.1016/j.ijpharm.2008.04.004
Johnston MJ, Semple SC, Klimuk SK, Ansell S, Maurer N, Cullis PR: Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim Biophys Acta 2007, 1768:1121–1127. DOI: https://doi.org/10.1016/j.bbamem.2007.01.019
Mezei, M. (1993). Liposomes and the skin. In: Gregoriadis, G., Florence, A. T., Patel, H. M., [Eds.] , Liposomes in Drug Delivery, Harwood Academic Publishers pp. 125-135. DOI: https://doi.org/10.1201/9780203748824-9
Mayer, L. D., Hope, M. J., Cullis, P. R., & Janoff, A. S. (1985). Solute distributions and trapping efficiencies observed in freeze-thawed multilmellar vesicles. Biochim Biophys Acta, 817, 193-196. DOI: https://doi.org/10.1016/0005-2736(85)90084-7
Vyas, S. P., & Khar, R. K. (2006). Targeted And Controlled Drug Delivery: Novel Carrier Systems. Edition 1, CBS Publishers & Distributor, New Delhi. pp. 421-427.
Bangham, A. D., & Horne, R. W. (1964). Negative staining of phospholipids and their structured modification by surface active agents as observed in the electron microscope, J Mol Biol, 8, 660–668. DOI: https://doi.org/10.1016/S0022-2836(64)80115-7
Papahadjopoulos, D. ed., (1978). Liposomes and their use in biology and medicine, Ann. NY Acad Sci. 308, 1–412.
Lasic, D. D. (1992). Liposomes, Am Sci, 80, 20–31.
Lipowsky, R. (1992). The conformation of membranes, Nature, 349, 475–481.Fielding, R. M., & Abra, R. M. (1992). Factors affecting the release rate of terbutaline from liposome formulations after intratracheal instillation in the guinea pig. Pharmaceutical research, 9(2), 220-223.
Hamori, C. J., Lasic, D. D., Vreman, H. J., & Stevenson, D. K. (1993). Targeting zinc protoporphyrin liposomes to the spleen using reticuloendothelial blockade with blank liposomes. Pediatric research, 34(1), 1-5. DOI: https://doi.org/10.1203/00006450-199307000-00001
B. C. Surve, B. Nemade, and V. Kaul, "Nano-electronic devices with machine learning capabilities," ICTACT Journal on Microelectronics, vol. 9, no. 3, pp. 1601-1606, Oct. 2023, doi: 10.21917/ijme.2023.0277.
G. Khandelwal, B. Nemade, N. Badhe, D. Mali, K. Gaikwad, and N. Ansari, "Designing and Developing novel methods for Enhancing the Accuracy of Water Quality Prediction for Aquaponic Farming," Advances in Nonlinear Variational Inequalities, vol. 27, no. 3, pp. 302-316, Aug. 2024, ISSN: 1092-910X.
B. Nemade, S. S. Alegavi, N. B. Badhe, and A. Desai, “Enhancing information security in multimedia streams through logic learning machine assisted moth-flame optimization,” ICTACT Journal of Communication Technology, vol. 14, no. 3, 2023.
S. S. Alegavi, B. Nemade, V. Bharadi, S. Gupta, V. Singh, and A. Belge, “Revolutionizing Healthcare through Health Monitoring Applications with Wearable Biomedical Devices,” International Journal of Recent Innovations and Trends in Computing and Communication, vol. 11, no. 9s, pp. 752–766, 2023. [Online]. Available: https://doi.org/10.17762/ijritcc.v11i9s.7890. DOI: https://doi.org/10.17762/ijritcc.v11i9s.7890
V. Kulkarni, B. Nemade, S. Patel, K. Patel, and S. Velpula, "A short report on ADHD detection using convolutional neural networks," Frontiers in Psychiatry, vol. 15, p. 1426155, Sept. 2024, doi: 10.3389/fpsyt.2024.1426155. DOI: https://doi.org/10.3389/fpsyt.2024.1426155
B. Nemade and D. Shah, “An IoT-Based Efficient Water Quality Prediction System for Aquaponics Farming,” in Computational Intelligence: Select Proceedings of InCITe 2022, Singapore: Springer Nature Singapore, 2023, pp. 311-323. [Online]. Available: https://doi.org/10.1007/978-981-19-7346-8_27. DOI: https://doi.org/10.1007/978-981-19-7346-8_27
B. Nemade and D. Shah, “IoT-based Water Parameter Testing in Linear Topology,” in 2020 10th International Conference on Cloud Computing, Data Science and Engineering (Confluence), Noida, India, 2020, pp. 546-551, doi: 10.1109/Confluence47617.2020.9058224. DOI: https://doi.org/10.1109/Confluence47617.2020.9058224
Allen, T. M., & Chonn, A. (1987). Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS letters, 223(1), 42-46. DOI: https://doi.org/10.1016/0014-5793(87)80506-9
Gabizon, A., & Papahadjopoulos, D. (1988). Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proceedings of the National Academy of Sciences, 85(18), 6949-6953. DOI: https://doi.org/10.1073/pnas.85.18.6949
Woodle, M. C., & Lasic, D. D. (1992). Sterically stabilized vesicles, Biochim Biophys Acta, 1113, 171–199. DOI: https://doi.org/10.1016/0304-4157(92)90038-C
Lasic, D. D., Martin, F. J., Gabizon, A., Huang, S. K., & Papahadjopoulos, D. (1991). Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochimica et Biophysica Acta (BBA)-[Biomembranes, 1070(1), 187-192. DOI: https://doi.org/10.1016/0005-2736(91)90162-2
Bezerra, C. F., de Alencar Júnior, J. G., de Lima Honorato, R., Dos Santos, A. T. L., Pereira da Silva, J. C., Gusmão da Silva, T., Leal, A. L. A.B., Rocha, J. E., de Freitas, T. S., Tavares Vieira, T. A., Bezerra, M. C. F., Sales, D. L., Kerntopf, M. R., de Araujo Delmondes, G., Filho, J. M. B., Peixoto, L. R., Pinheiro, A. P., Ribeiro-Filho, J., Coutinho, H. D. M., Morais-Braga, M. F. B. andGonçalves da Silva, T. (2020). Antifungal activity of farnesol incorporated in liposomes and associated with fluconazole. Chemistry and physics of lipids, 233, 10498 DOI: https://doi.org/10.1016/j.chemphyslip.2020.104987
Ye, Q., Asherman, J., Stevenson, M., Brownson, E. andKatre, N. V. (2000). DepoFoam technology: a vehicle for controlled delivery of protein and peptide drugs. Journal of controlled release: official journal of the Controlled Release Society, 64(1-3), 155–166. Zhang, Z. J. and Michniak-Kohn, B. (2020). Flavosomes, novel deformable liposomes for the co-delivery of anti-inflammatory compounds to skin. International journal of pharmaceutics, 585, 119500. DOI: https://doi.org/10.1016/S0168-3659(99)00146-7
Bogner, J. R., & Goebel, F. D. (1995). Phase II open-label trial of doxil (stealth liposomal doxorubicin) in advanced AIDS-KS. In VIII International Conference on AIDS, in ref (Vol. 51).
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.