Enhancing Monkeypox Detection with Efficientnet-B5 And Image Augmentation Fusion Technique
DOI:
https://doi.org/10.32628/IJSRST241161119Keywords:
monkeypox, EfficientNet-B5, augmentation fusion, transfer learning, deep learningAbstract
The recent surge of monkeypox infections worldwide has underscored the need for rapid, accurate diagnostic tools, particularly in regions with limited access to laboratory-based tests. This study employs deep learning, utilizing a pre-trained efficientNet-B5 model through transfer learning, to classify monkeypox from digital skin lesion images. Data was compiled from Kaggle, web scraping, and hospital records, covering both monkeypox and similar skin conditions such as chickenpox, measles and smallpox. The dataset was preprocessed using advanced augmentation fusion techniques, enhancing image diversity and maintaining diagnostic features critical for the model's efficacy. The efficientNet-B5 model achieved impressive results, demonstrating 99.47% accuracy, 99.19% precision and a recall of 99.72 for monkeypox. These findings suggest that the efficientNet-B5 model, supported by augmentation fusion, can serve as a reliable tool for detecting monkeypox, providing a scalable solution for early identification and public health intervention in resource-constrained settings.
Downloads
References
Adler, H., Gould, S., Hine, P., Snell, L. B., Wong, W., Houlihan, C. F., Osborne, J. C., Rampling, T., Beadsworth, M. B., Duncan, C. J., Dunning, J., Fletcher, T. E., Hunter, E. R., Jacobs, M., Khoo, S. H., Newsholme, W., Porter, D., Porter, R. J., Ratcliffe, L., … Hruby, D. E. (2022). Clinical features and management of human monkeypox: a retrospective observational study in the UK. The Lancet Infectious Diseases, 22(8), 1153–1162. https://doi.org/10.1016/S1473-3099(22)00228-6
Ahsan, M. M., Ali, M. S., Hassan, M. M., Abdullah, T. A., Gupta, K. D., Bagci, U., Kaushal, C., & Soliman, N. F. (2023). Monkeypox Diagnosis with Interpretable Deep Learning. IEEE Access, 11, 81965–81980. https://doi.org/10.1109/ACCESS.2023.3300793 DOI: https://doi.org/10.1109/ACCESS.2023.3300793
Alabi, M. (2024). Transfer Learning with Pre-trained Medical Image Models: Accelerating Model Development. https://www.researchgate.net/publication/384017356
Alakus, T. B., & Baykara, M. (2022). Comparison of Monkeypox and Wart DNA Sequences with Deep Learning Model. Applied Sciences (Switzerland), 12(20). https://doi.org/10.3390/app122010216 DOI: https://doi.org/10.3390/app122010216
Alharbi, A. H. (2024). Classification of monkeypox images using Al-Biruni earth radius optimization with deep convolutional neural network. AIP Advances, 14(6). https://doi.org/10.1063/5.0213963 DOI: https://doi.org/10.1063/5.0213963
Alharbi, A. H., Towfek, S. K., Abdelhamid, A. A., Ibrahim, A., Eid, M. M., Khafaga, D. S., Khodadadi, N., Abualigah, L., & Saber, M. (2023). Diagnosis of Monkeypox Disease Using Transfer Learning and Binary Advanced Dipper Throated Optimization Algorithm. Biomimetics, 8(3), 313. https://doi.org/10.3390/biomimetics8030313 DOI: https://doi.org/10.3390/biomimetics8030313
Alhasson, H. F., Almozainy, E., Alharbi, M., Almansour, N., Alharbi, S. S., & Khan, R. U. (2023). A Deep Learning-Based Mobile Application for Monkeypox Detection. Applied Sciences (Switzerland), 13(23). https://doi.org/10.3390/app132312589 DOI: https://doi.org/10.3390/app132312589
Aljabali, A. A., Obeid, M. A., Nusair, M. B., Hmedat, A., & Tambuwala, M. M. (2022). Monkeypox virus: An emerging epidemic. In Microbial Pathogenesis (Vol. 173). Academic Press. https://doi.org/10.1016/j.micpath.2022.105794 DOI: https://doi.org/10.1016/j.micpath.2022.105794
Attallah, O. (2023). MonDiaL-CAD: Monkeypox diagnosis via selected hybrid CNNs unified with feature selection and ensemble learning. Digital Health, 9. https://doi.org/10.1177/20552076231180054 DOI: https://doi.org/10.1177/20552076231180054
Bunse, T., Ziel, A., Hagen, P., Rigopoulos, G., Yasar, U., Inan, H., Köse, G., Eigner, U., Kaiser, R., Bardeck, N., Köffer, J., Kolb, M., Ren, X., Tan, D., Dai, L., Protzer, U., & Wettengel, J. M. (2024). Analytical and clinical evaluation of a novel real-time PCR-based detection kit for Mpox virus. Medical Microbiology and Immunology, 213(1). https://doi.org/10.1007/s00430-024-00800-4 DOI: https://doi.org/10.1007/s00430-024-00800-4
Dahiya, N., Sharma, Y. K., Rani, U., Hussain, S., Nabilal, K. V., Mohan, A., & Nuristani, N. (2023). Hyper-parameter tuned deep learning approach for effective human monkeypox disease detection. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-43236-1 DOI: https://doi.org/10.1038/s41598-023-43236-1
Duarte, P. M., Adesola, R. O., Priyadarsini, S., Singh, R., Shaheen, M. N. F., Ogundijo, O. A., Gulumbe, B. H., Lounis, M., Samir, M., Govindan, K., Adebiyi, O. S., Scott, G. Y., Ahmadi, P., Mahmoodi, V., Chogan, H., Gholami, S., Shirazi, O., Moghadam, S. K., Jafari, N., … Tazerji, S. S. (2024). Unveiling the Global Surge of Mpox (Monkeypox): A comprehensive review of current evidence. The Microbe, 4, 100141. https://doi.org/10.1016/j.microb.2024.100141 DOI: https://doi.org/10.1016/j.microb.2024.100141
Eliwa, E. H. I., El Koshiry, A. M., Abd El-Hafeez, T., & Farghaly, H. M. (2023). Utilizing convolutional neural networks to classify monkeypox skin lesions. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-41545-z DOI: https://doi.org/10.1038/s41598-023-41545-z
Elsheikh, R., Makram, A. M., Vasanthakumaran, T., Tomar, S., Shamim, K., Tranh, N. D., Elsheikh, S. S., Van, N. T., & Huy, N. T. (2023a). Monkeypox: A comprehensive review of a multifaceted virus. In Infectious Medicine (Vol. 2, Issue 2, pp. 74–88). Elsevier B.V. https://doi.org/10.1016/j.imj.2023.04.009 DOI: https://doi.org/10.1016/j.imj.2023.04.009
Elsheikh, R., Makram, A. M., Vasanthakumaran, T., Tomar, S., Shamim, K., Tranh, N. D., Elsheikh, S. S., Van, N. T., & Huy, N. T. (2023b). Monkeypox: A comprehensive review of a multifaceted virus. In Infectious Medicine (Vol. 2, Issue 2, pp. 74–88). Elsevier B.V. https://doi.org/10.1016/j.imj.2023.04.009 DOI: https://doi.org/10.1016/j.imj.2023.04.009
Farzipour, A., Elmi, R., & Nasiri, H. (2023). Detection of Monkeypox Cases Based on Symptoms Using XGBoost and Shapley Additive Explanations Methods. Diagnostics, 13(14), 2391. https://doi.org/10.3390/diagnostics13142391 DOI: https://doi.org/10.3390/diagnostics13142391
Hasan, S., & Saeed, S. (2022). Tropical Medicine and Infectious Disease. https://doi.org/10.3390/tropicalmed7100283
Huhn, G. D., Bauer, A. M., Yorita, K., Graham, M. B., Sejvar, J., Likos, A., Damon, I. K., Reynolds, M. G., & Kuehnert, M. J. (2005). Clinical Characteristics of Human Monkeypox, and Risk Factors for Severe Disease. Clinical Infectious Diseases, 41(12), 1742–1751. https://doi.org/10.1086/498115 DOI: https://doi.org/10.1086/498115
Islam, T., Hussain, M. A., Uddin, F., Chowdhury, H., & Islam, B. M. R. (2022). Can Artificial Intelligence Detect Monkeypox from Digital Skin Images? https://doi.org/10.1101/2022.08.08.503193 DOI: https://doi.org/10.1101/2022.08.08.503193
Jefferson, S., Da Silva, R., Kohl, A., Pena, L., & Pardee, K. (2023). iScience Clinical and laboratory diagnosis of monkeypox (mpox): Current status and future directions. ISCIENCE, 26, 106759. https://doi.org/10.1016/j.isci DOI: https://doi.org/10.1016/j.isci.2023.106759
Kulkarni, S., Oza, J., Patil, A., More, R., Kambli, G., & Maity, A. (2023). A Streamlined Approach towards Monkeypox Detection. https://doi.org/10.36227/techrxiv.24634083.v1 DOI: https://doi.org/10.36227/techrxiv.24634083
Lawal Rukuna, A., Zambuk, F. U., Gital, A. Y., Muhammad Bello, U., Danladi Shemang, K., & Ado Sabongari, N. (2024). Exploring Deep Learning Approaches for Citrus Diseases Detection and Classification: A Review. International Journal of Innovative Science and Research Technology (IJISRT), 1821–1827. https://doi.org/10.38124/ijisrt/IJISRT24MAR1459 DOI: https://doi.org/10.38124/ijisrt/IJISRT24MAR1459
Li, M., Jiang, Y., Zhang, Y., & Zhu, H. (2023). Medical image analysis using deep learning algorithms. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1273253 DOI: https://doi.org/10.3389/fpubh.2023.1273253
Liu, Z., Lv, Q., Yang, Z., Li, Y., Lee, C. H., & Shen, L. (2023). Recent progress in transformer-based medical image analysis. Computers in Biology and Medicine, 164, 107268. https://doi.org/10.1016/j.compbiomed.2023.107268 DOI: https://doi.org/10.1016/j.compbiomed.2023.107268
Luo, Q., & Han, J. (2022). Preparedness for a monkeypox outbreak. In Infectious Medicine (Vol. 1, Issue 2, pp. 124–134). Elsevier B.V. https://doi.org/10.1016/j.imj.2022.07.001 DOI: https://doi.org/10.1016/j.imj.2022.07.001
Mohanto, S., Faiyazuddin, M., Dilip Gholap, A., JC, D., Bhunia, A., Subbaram, K., Gulzar Ahmed, M., Nag, S., Shabib Akhtar, M., Bonilla-Aldana, D. K., Sah, S., Malik, S., Haleem Al-qaim, Z., Barboza, J. J., & Sah, R. (2023). Addressing the resurgence of global monkeypox (Mpox) through advanced drug delivery platforms. In Travel Medicine and Infectious Disease (Vol. 56). Elsevier Inc. https://doi.org/10.1016/j.tmaid.2023.102636 DOI: https://doi.org/10.1016/j.tmaid.2023.102636
Morgan, C. N., Whitehill, F., Doty, J. B., Schulte, J., Matheny, A., Stringer, J., Delaney, L. J., Esparza, R., Rao, A. K., & McCollum, A. M. (2022). Environmental Persistence of Monkeypox Virus on Surfaces in Household of Person with Travel-Associated Infection, Dallas, Texas, USA, 2021. Emerging Infectious Diseases, 28(10), 1982–1989. https://doi.org/10.3201/eid2810.221047 DOI: https://doi.org/10.3201/eid2810.221047
Ogunleye, S. C., Akinsulie, O. C., Aborode, A. T., Olorunshola, M. M., Gbore, D., Oladoye, M., Adesola, R. O., Gbadegoye, J. O., Olatoye, B. J., Lawal, M. A., Bakare, A. B., Adekanye, O., & Chinyere, E. C. (2024). The re-emergence and transmission of Monkeypox virus in Nigeria: the role of one health. https://doi.org/10.3389/fpubh.2023.1334238 DOI: https://doi.org/10.3389/fpubh.2023.1334238
Patel, A., Bilinska, J., Tam, J. C. H., Da Silva Fontoura, D., Mason, C. Y., Daunt, A., Snell, L. B., Murphy, J., Potter, J., Tuudah, C., Sundramoorthi, R., Abeywickrema, M., Pley, C., Naidu, V., Nebbia, G., Aarons, E., Botgros, A., Douthwaite, S. T., van Nispen tot Pannerden, C., … Nori, A. (2022). Clinical features and novel presentations of human monkeypox in a central London centre during the 2022 outbreak: descriptive case series. BMJ, e072410. https://doi.org/10.1136/bmj-2022-072410 DOI: https://doi.org/10.1136/bmj-2022-072410
Pittman P.R., et al. (2022). Clinical characterization of human monkeypox infections in the Democratic Republic of the Congo. MedRxiv. DOI: https://doi.org/10.1101/2022.05.26.22273379
Raha, A. D., Gain, M., Debnath, R., Adhikary, A., Qiao, Y., Hassan, M. M., Bairagi, A. K., & Islam, S. M. S. (2024). Attention to Monkeypox: An Interpretable Monkeypox Detection Technique Using Attention Mechanism. IEEE Access, 12, 51942–51965. https://doi.org/10.1109/ACCESS.2024.3385099 DOI: https://doi.org/10.1109/ACCESS.2024.3385099
Rayed, M. E., Islam, S. M. S., Niha, S. I., Jim, J. R., Kabir, M. M., & Mridha, M. F. (2024a). Deep learning for medical image segmentation: State-of-the-art advancements and challenges. In Informatics in Medicine Unlocked (Vol. 47). Elsevier Ltd. https://doi.org/10.1016/j.imu.2024.101504 DOI: https://doi.org/10.1016/j.imu.2024.101504
Rayed, Md. E., Islam, S. M. S., Niha, S. I., Jim, J. R., Kabir, M. M., & Mridha, M. F. (2024b). Deep learning for medical image segmentation: State-of-the-art advancements and challenges. Informatics in Medicine Unlocked, 47, 101504. https://doi.org/10.1016/j.imu.2024.101504 DOI: https://doi.org/10.1016/j.imu.2024.101504
Sahin, V. H., Oztel, I., & Yolcu Oztel, G. (2022). Human Monkeypox Classification from Skin Lesion Images with Deep Pre-trained Network using Mobile Application. Journal of Medical Systems, 46(11). https://doi.org/10.1007/s10916-022-01863-7 DOI: https://doi.org/10.1007/s10916-022-01863-7
Sarker, I. H. (2021). Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Computer Science, 2(6), 420. https://doi.org/10.1007/s42979-021-00815-1 DOI: https://doi.org/10.1007/s42979-021-00815-1
Silva, S. J. R. da, Kohl, A., Pena, L., & Pardee, K. (2023). Clinical and laboratory diagnosis of monkeypox (mpox): Current status and future directions. IScience, 26(6), 106759. https://doi.org/10.1016/j.isci.2023.106759 DOI: https://doi.org/10.1016/j.isci.2023.106759
Thornhill, J. P., Barkati, S., Walmsley, S., Rockstroh, J., Antinori, A., Harrison, L. B., Palich, R., Nori, A., Reeves, I., Habibi, M. S., Apea, V., Boesecke, C., Vandekerckhove, L., Yakubovsky, M., Sendagorta, E., Blanco, J. L., Florence, E., Moschese, D., Maltez, F. M., … Orkin, C. M. (2022). Monkeypox Virus Infection in Humans across 16 Countries — April–June 2022. New England Journal of Medicine, 387(8), 679–691. https://doi.org/10.1056/NEJMoa2207323 DOI: https://doi.org/10.1056/NEJMoa2207323
Velu, M., Dhanaraj, R. K., Balusamy, B., Kadry, S., Yu, Y., Nadeem, A., & Rauf, H. T. (2023). Human Pathogenic Monkeypox Disease Recognition Using Q-Learning Approach. Diagnostics, 13(8). https://doi.org/10.3390/diagnostics13081491 DOI: https://doi.org/10.3390/diagnostics13081491
Wang, J., Wang, S., & Zhang, Y. (2024). Deep learning on medical image analysis. In CAAI Transactions on Intelligence Technology. John Wiley and Sons Inc. https://doi.org/10.1049/cit2.12356 DOI: https://doi.org/10.1049/cit2.12356
WHO. (2023). Mpox (Monkeypox). https://www.who.int/news-room/fact-sheets/detail/mpox
Yinka-Ogunleye, A., Aruna, O., Dalhat, M., Ogoina, D., McCollum, A., Disu, Y., Mamadu, I., Akinpelu, A., Ahmad, A., Burga, J., Ndoreraho, A., Nkunzimana, E., Manneh, L., Mohammed, A., Adeoye, O., Tom-Aba, D., Silenou, B., Ipadeola, O., Saleh, M., … Satheshkumar, P. S. (2019). Outbreak of human monkeypox in Nigeria in 2017–18: a clinical and epidemiological report. The Lancet Infectious Diseases, 19(8), 872–879. https://doi.org/10.1016/S1473-3099(19)30294-4 DOI: https://doi.org/10.1016/S1473-3099(19)30294-4
Yolcu Oztel, G. (2024). Vision transformer and CNN-based skin lesion analysis: classification of monkeypox. Multimedia Tools and Applications, 83(28), 71909–71923. https://doi.org/10.1007/s11042-024-19757-w DOI: https://doi.org/10.1007/s11042-024-19757-w
Zhang, H., & Qie, Y. (2023a). Applying Deep Learning to Medical Imaging: A Review. In Applied Sciences (Switzerland) (Vol. 13, Issue 18). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/app131810521 DOI: https://doi.org/10.3390/app131810521
Zhang, H., & Qie, Y. (2023b). Applying Deep Learning to Medical Imaging: A Review. Applied Sciences, 13(18), 10521. https://doi.org/10.3390/app131810521 DOI: https://doi.org/10.3390/app131810521
Zhao, Z., Alzubaidi, L., Zhang, J., Duan, Y., & Gu, Y. (2024). A comparison review of transfer learning and self-supervised learning: Definitions, applications, advantages and limitations. Expert Systems with Applications, 242, 122807. https://doi.org/10.1016/j.eswa.2023.122807 DOI: https://doi.org/10.1016/j.eswa.2023.122807
Zhou, Y., & Chen, Z. (2023). Mpox: a review of laboratory detection techniques. Archives of Virology, 168, 221. https://doi.org/10.1007/s00705-023-05848-w DOI: https://doi.org/10.1007/s00705-023-05848-w
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.