Review on Digital Twin in Pharmaceutical and Biopharmaceutical Manufacturing

Authors

  • Kamini Ghavat Student, Shivajirao S. Jondhle College of Pharmacy, Asangaon, Thane, Maharashtra, India Author
  • Swati Wakchoure Assistant Professor, Department of Pharmacognosy & Quality Assurance, Shivajirao S. Jondhle College of Pharmacy, Maharashtra, India Author
  • Pooja Surve Assistant Professor, Department of Pharmacognosy & Quality Assurance, Shivajirao S. Jondhle College of Pharmacy, Maharashtra, India Author
  • Nishita Hole Student, Shivajirao S. Jondhle College of Pharmacy, Asangaon, Thane, Maharashtra, India Author

DOI:

https://doi.org/10.32628/IJSRST241161127

Keywords:

digital twin, Industry 4.0, pharmaceutical manufacturing, biopharmaceutical manufacturing, process modeling

Abstract

The rise of Industry 4.0 technologies fosters the creation and use of digital twins (DT), which aids in transforming the manufacturing sector into a more responsive and intelligent domain. DTs are digital replicas of physical systems that emulate the behavior and dynamics of those systems. A comprehensive DT integrates physical elements, virtual components, and the data exchange between them. Integrated DTs are being utilized across various processes and product sectors. Although the pharmaceutical industry has recently progressed by adopting Quality-by-Design (QbD) initiatives and is in the midst of a digital transformation to integrate Industry 4.0, there has yet to be a complete DT implementation in pharmaceutical manufacturing. Consequently, it is essential to evaluate the advancements of the pharmaceutical sector in adopting DT solutions. This narrative literature review aims to provide an overview of the current state of DT development and its application in pharmaceutical and biopharmaceutical production. Additionally, it addresses the challenges and opportunities for future research in this area.

Downloads

Download data is not yet available.

References

https://www.researchgate.net/publication/344144369_Digital_Twins_in_Pharmaceutical_and_Biopharmaceutical_Manufacturing_A_Literature_Review

https://www.mdpi.com/2227-9717/8/9/1088

Venkatasubramanian, V. The promise of artificial intelligence in chemical engineering: Is it here, finally? AIChE J. 2019, 65, 466–478. DOI: https://doi.org/10.1002/aic.16489

Bao, J.; Guo, D.; Li, J.; Zhang, J. The modelling and operations for the digital twin in the context of manufacturing. Enterp. Inf. Syst. 2018, 13, 534–556 DOI: https://doi.org/10.1080/17517575.2018.1526324

Tao, F.; Qi, Q.; Wang, L.; Nee, A.Y.C. Digital Twins and Cyber–Physical Systems toward Smart Manufacturing and Industry 4.0: Correlation and Comparison. Engineering 2019, 5, 653–661. DOI: https://doi.org/10.1016/j.eng.2019.01.014

Legner, C.; Eymann, T.; Hess, T.; Matt, C.; Böhmann, T.; Drews, P.; Madche, A.; Urbach, N.; Ahlemann, F. Digitalization: Opportunity and Challenge for the Business and Information Systems Engineering Community. Bus. Inf. Syst. Eng. 2017, 59, 301–308. DOI: https://doi.org/10.1007/s12599-017-0484-2

Damiani, L.; Demartini, M.; Guizzi, G.; Revetria, R.; Tonelli, F. Augmented and virtual reality applications in industrial systems: A qualitative review towards the industry 4.0 era. IFAC-PapersOnLine 2018, 51, 624–630. DOI: https://doi.org/10.1016/j.ifacol.2018.08.388

Zhuang, C.; Liu, J.; Xiong, H. Digital twin-based smart production management and control framework for the complex product assembly shop-floor. Int. J. Adv. Manuf. Technol. 2018, 96, 1149–1163. DOI: https://doi.org/10.1007/s00170-018-1617-6

Rosen, R.; von Wichert, G.; Lo, G.; Bettenhausen, K.D. About The Importance of Autonomy and Digital Twins for the Future of Manufacturing. IFAC-PapersOnLine 2015, 48, 567–572. DOI: https://doi.org/10.1016/j.ifacol.2015.06.141

Grieves, M. Digital Twin: Manufacturing Excellence through Virtual Factory Replication. White Paper 2014, 1, 1–7

Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex. Systems. In Transdisciplinary Perspectives on Complex Systems; Springer: Cham, Switzerland, 2017; pp. 85–113. DOI: https://doi.org/10.1007/978-3-319-38756-7_4

Glaessgen, E.H.; Stargel, D.S. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference—Special Session on the Digital Twin, Honolulu, HI, USA, 23–26 April 2012. DOI: https://doi.org/10.2514/6.2012-1818

Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine 2018, 51, 1016–1022 DOI: https://doi.org/10.1016/j.ifacol.2018.08.474

Lopes, M.R.; Costigliola, A.; Pinto, R.; Vieira, S.; Sousa, J.M.C. Pharmaceutical quality control laboratory digital twin—A novel governance model for resource planning and scheduling. Int. J. Prod. Res. 2019, 1–15. DOI: https://doi.org/10.1080/00207543.2019.1683250

Kumar, S.; Talasila, D.; Gowrav, M.; Gangadharappa, H. Adaptations of Pharma 4.0 from Industry 4.0. Drug Invent. Today 2020, 14, 405–415.

Reinhardt, I.C.; Oliveira, D.J.C.; Ring, D.D.T. Current Perspectives on the Development of Industry 4.0 in the Pharmaceutical Sector. J. Ind. Inf. Integr. 2020, 18, 100131. DOI: https://doi.org/10.1016/j.jii.2020.100131

Zhang, C.; Xu, W.; Liu, J.; Liu, Z.; Zhou, Z.; Pham, D.T. A Reconfigurable Modeling Approach for Digital Twin-based Manufacturing System. Procedia CIRP 2019, 83, 118–125. DOI: https://doi.org/10.1016/j.procir.2019.03.141

González, I.; Calderón, A.J.; Figueiredo, J.; Sousa, J.M.C. A Literature Survey on Open Platform Communications (OPC) Applied to Advanced Industrial Environments. Electronics 2019, 8, 510. DOI: https://doi.org/10.3390/electronics8050510

Kamble, R.; Sharma, S.; Varghese, V.; Mahadik, K. Process analytical technology (PAT) in pharmaceutical development and its application. Int. J. Pharm. Sci. Rev. Res. 2013, 23, 212–223.

Ierapetritou, M.; Muzzio, F.; Reklaitis, G. Perspectives on the continuous manufacturing of powder-based pharmaceutical processes. AIChE J. 2016, 62, 1846–1862. DOI: https://doi.org/10.1002/aic.15210

Simon, L.L.; Pataki, H.; Marosi, G.; Meemken, F.; Hungerbühler, K.; Baiker, A.; Tummala, S.; Glennon, B.; Kuentz, M.; Steele, G.; et al. Assessment of Recent Process. Analytical Technology (PAT) Trends: A Multiauthor Review. Org. Process Res. Dev. 2015, 19, 3–62. DOI: https://doi.org/10.1021/op500261y

Ostergaard, I.; Szilagyi, B.; de Diego, H.L.; Qu, H.; Nagy, Z.K. Polymorphic Control and Scale-Up Strategy for Antisolvent Crystallization Using Direct Nucleation Control. Cryst. Growth Des. 2020, 20, 2683–2697. DOI: https://doi.org/10.1021/acs.cgd.0c00101

U.S. Department of Health and Human Services, F.D.A. PAT-A Framework for Innovative Pharmaceutical Development, Manufacturing and Quality Assurance; U.S. Department of Health and Human Services, F.D.A.: Rockville, MD, USA, 2004.

Badr, S.; Sugiyama, H. A PSE perspective for the efficient production of monoclonal antibodies: Integration of process, cell, and product design aspects. Curr. Opin. Chem. Eng. 2020, 27, 121–128 DOI: https://doi.org/10.1016/j.coche.2020.01.003

Narayanan, H.; Luna, M.F.; von Stosch, M.; Cruz Bournazou, M.N.; Polotti, G.; Morbidelli, M.; Butte, A.; Sokolov, M. Bioprocessing in the Digital Age: The Role of Process Models. Biotechnol. J. 2020, 15, e1900172. DOI: https://doi.org/10.1002/biot.201900172

Read, E.K.; Park, J.T.; Shah, R.B.; Riley, B.S.; Brorson, K.A.; Rathore, A.S. Process analytical technology (PAT) for biopharmaceutical products: Part., I. concepts and applications. Biotechnol. Bioeng. 2010, 105, 276–84. DOI: https://doi.org/10.1002/bit.22528

Selvarasu, S.; Kim, D.Y.; Karimi, I.A.; Lee, D.-Y. Combined data preprocessing and multivariate statistical analysis characterizes fed-batch culture of mouse hybridoma cells for rational medium design. J. Biotechnol. 2010, 150, 94–100. DOI: https://doi.org/10.1016/j.jbiotec.2010.07.016

Lee, H.W.; Christie, A.; Xu, J.; Yoon, S. Data fusion-based assessment of raw materials in mammalian cell culture. Biotechnol. Bioeng. 2012, 109, 2819–2828 DOI: https://doi.org/10.1002/bit.24548

Casola, G.; Siegmund, C.; Mattern, M.; Sugiyama, H. Data mining algorithm for pre-processing biopharmaceutical drug product manufacturing records. Comput. Chem. Eng. 2019, 124, DOI: https://doi.org/10.1016/j.compchemeng.2018.12.001

Gangadharan, N.; Turner, R.; Field, R.; Oliver, S.G.; Slater, N.; Dikicioglu, D. Metaheuristic approaches in biopharmaceutical process development data analysis. Bioprocess Biosyst. Eng. 2019, , DOI: https://doi.org/10.1007/s00449-019-02147-0

Downloads

Published

12-12-2024

Issue

Section

Research Articles

How to Cite

Review on Digital Twin in Pharmaceutical and Biopharmaceutical Manufacturing. (2024). International Journal of Scientific Research in Science and Technology, 11(6), 717-726. https://doi.org/10.32628/IJSRST241161127

Similar Articles

1-10 of 159

You may also start an advanced similarity search for this article.