The Evaluation of the Tube Current Impact on Axial, Sagittal, and Coronal MTFs on CT Images Using an In-House Phantom

Authors

  • Choirul Anam Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia Author
  • Betha S. Wulandari Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia Author
  • Heri Sutanto Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia Author
  • Riska Amilia Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia Author
  • Yuliana Lakapu Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia Author

DOI:

https://doi.org/10.32628/IJSRST24116185

Keywords:

3D-MTF, spatial resolution, image quality, tube current, build in-house phantom

Abstract

This study aims to evaluate an impact of tube current on modulation transfer functions (MTFs) from axial, sagittal, and coronal computed tomography (CT) images of an in-house phantom. An in-house phantom having three metal wires at x-, y-, and z-directions for 3D-MTF evaluation was scanned using GE Revolution EVO 128-slice CT scanner. The tube current was varied (i.e., 100, 200, and 300 mA). While other input parameters were kept constant (i.e., tube voltage of 120 kV, slice thickness of 0.625 mm, rotation time of 1 s). The measurements of MTF were performed automatically using IndoQCT software. MTFs in the x-axis were measured from axial images. MTFs in z-axis were measured from sagittal and coronal images (They were reformatted from axial images using a cubic interpolation). The mean values of 10%-MTF for 100 mA in axial, sagittal and coronal images were 0.70 ± 0.00, 0.69 ± 0.00 and 0.67 ± 0.01 mm-1, respectively. The mean values of 10%-MTF for 200 mA in axial, sagittal and coronal images were 0.71 ± 0.00, 0.69 ± 0.00 and 0.67 ± 0.00 mm-1, respectively. The mean values of 10%-MTF for 300 mA in axial, sagittal and coronal images were 0.70 ± 0.00, 0.69 ± 0.01 and 0.68 ± 0.00 mm-1, respectively. Tube current has no obvious impact on MTF values in the x- and z-axis from axial, sagittal, and coronal images.

Downloads

Download data is not yet available.

References

Anam C, Fujibuchi, T, Haryanto F, Budi WS, Sutanto H, Adi K, Dougherty G. Automated MTF measurement in CT images with a simple wire phantom. Pol J Med Phys Eng. 2019;25(3):179-187. doi:10.2478/pjmpe-2019-0024. DOI: https://doi.org/10.2478/pjmpe-2019-0024

Bushberg JT, Seibert JA, Leidholdt EM, Boone JM. The Essential Physics of Medical Imaging Third Edition. Philadelphia: Lippincott Williams & Wilkins.2012.

Setiawan AM, Anam C, Hidayanto E, Sutanto H, Naufal A, Dougherty G. Comparison of noise-power spectrum and modulation-transfer function for CT images reconstructed with iterative and deep learning image reconstructions: An initial experience study. Pol J Med Phys Eng. 2023;29(2)104-112. doi:10.2478/pjmpe-2023-0012. DOI: https://doi.org/10.2478/pjmpe-2023-0012

Raman SP, Mahesh M, Blasko RV, Fishman EK. CT scan parameters and radiation dose: practical advice for radiologists. J Am Coll Radiol. 2013;10(11):840-846. doi:10.1016/j.jacr.2013.05.032. DOI: https://doi.org/10.1016/j.jacr.2013.05.032

Gascho D, Thali MJ, Niemann T. Post-mortem computed tomography: Technical principles and recommended parameter settings for high-resolution imaging. Med Sci Law. 2018;58(1):70-82. doi:10.1177/0025802417747167. DOI: https://doi.org/10.1177/0025802417747167

Pauwels R, Silkosessak O, Jacobs R, Bogaerts R, Bosmans H, Panmekiate S. A pragmatic approach to determine the optimal kVp in cone beam CT: balancing contrast-to-noise ratio and radiation dose. Dentomaxillofac Radiol. 2014;43(5):20140059. doi:10.1259/dmfr.20140059. DOI: https://doi.org/10.1259/dmfr.20140059

González-López A, Campos-Morcillo PA, Lago-Martín JD. Technical Note: An oversampling procedure to calculate the MTF of an imaging system from a bar-pattern image. Med Phys. 2016;43(10):5653. doi:10.1118/1.4963211. DOI: https://doi.org/10.1118/1.4963211

McCollough CH, Yu L, Kofler JM, et al. Degradation of CT Low-Contrast Spatial Resolution Due to the Use of Iterative Reconstruction and Reduced Dose Levels. Radiology. 2015;276(2):499-506. doi:10.1148/radiol.15142047. DOI: https://doi.org/10.1148/radiol.15142047

Anam C, Fujibuchi T, Budi WS, Haryanto F, Dougherty G. An algorithm for automated modulation transfer function measurement using an edge of a PMMA phantom: Impact of field of view on spatial resolution of CT images. J Appl Clin Med Phys. 2018;19(6):244-252. doi:10.1002/acm2.12476. DOI: https://doi.org/10.1002/acm2.12476

Rueckel J, Stockmar M, Pfeiffer F, Herzen J. Spatial resolution characterization of a X-ray microCT system. Appl Radiat Isot. 2014;94:230-234. doi:10.1016/j.apradiso.2014.08.014. DOI: https://doi.org/10.1016/j.apradiso.2014.08.014

Judy PF. The line spread function and modulation transfer function of a computed tomographic scanner. Med Phys. 1976;3(4):233-236. doi:10.1118/1.594283. DOI: https://doi.org/10.1118/1.594283

Kayugawa A, Ohkubo M, Wada S. Accurate determination of CT point-spread-function with high precision. J Appl Clin Med Phys. 2013;14(4):3905. Published 2013 Jul 8. doi:10.1120/jacmp.v14i4.3905. DOI: https://doi.org/10.1120/jacmp.v14i4.3905

Friedman SN, Fung GS, Siewerdsen JH, Tsui BM. A simple approach to measure computed tomography (CT) modulation transfer function (MTF) and noise-power spectrum (NPS) using the American College of Radiology (ACR) accreditation phantom. Med Phys. 2013;40(5):051907. doi:10.1118/1.4800795. DOI: https://doi.org/10.1118/1.4800795

Paruccini N, Villa R, Pasquali C, Spadavecchia C, Baglivi A, Crespi A. Evaluation of a commercial Model Based Iterative reconstruction algorithm in computed tomography. Phys Med. 2017;41:58-70. doi:10.1016/jejmp.2017.05.066. DOI: https://doi.org/10.1016/j.ejmp.2017.05.066

Zahro UM, Anam C, Budi WS, Triadyaksa P, Saragih JH, Rukmana DA. Investigation of Noise Level and Spatial Resolution of CT Images Filtered with a Selective Mean Filter and Its Comparison to an Adaptive Statistical Iterative Reconstruction. Iran J Med Phys. 2021;18(5):374-383. doi:10.22038/IJMP.2020.48813.1786.

Wu P, Boone JM, Hernandez AM, Mahesh M, Siewerdsen JH. Theory, method, and test tools for determination of 3D MTF characteristics in cone-beam CT. Med Phys. 2021;48(6):2772-2789. doi:10.1002/mp.14820. DOI: https://doi.org/10.1002/mp.14820

Anam C, Naufal A, Sutanto H, Dougherty G. Computational phantoms for investigating impact of noise magnitude on modulation transfer function. Indonesian J Elec Eng & Comp Sci. 2022;27(3):1428-1437. doi:10.11591/ijeecs.v27.i3.pp1428-1437. DOI: https://doi.org/10.11591/ijeecs.v27.i3.pp1428-1437

Wang J, Fleischmann D. Improving Spatial Resolution at CT: Development, Benefits, and Pitfalls. Radiology. 2018;289(1):261-262. doi:10.1148/radiol.2018181156. DOI: https://doi.org/10.1148/radiol.2018181156

Park S, Hwang TS, Lee HC. Image quality assessments of focal spot size on radiographic images in dogs. Korean J Vet Res. 2022;62(1), e8. doi:10.14405/kjvr.20210047. DOI: https://doi.org/10.14405/kjvr.20210047

Huda W, Abrahams RB. X-ray-based medical imaging and resolution. AJR Am J Roentgenol. 2015;204(4):W393-W397. doi:10.2214/AJR.14.13126. DOI: https://doi.org/10.2214/AJR.14.13126

Downloads

Published

30-11-2024

Issue

Section

Research Articles

How to Cite

The Evaluation of the Tube Current Impact on Axial, Sagittal, and Coronal MTFs on CT Images Using an In-House Phantom . (2024). International Journal of Scientific Research in Science and Technology, 11(6), 349-354. https://doi.org/10.32628/IJSRST24116185

Most read articles by the same author(s)

Similar Articles

1-10 of 154

You may also start an advanced similarity search for this article.