The Evaluation of the Tube Current Impact on Axial, Sagittal, and Coronal MTFs on CT Images Using an In-House Phantom
DOI:
https://doi.org/10.32628/IJSRST24116185Keywords:
3D-MTF, spatial resolution, image quality, tube current, build in-house phantomAbstract
This study aims to evaluate an impact of tube current on modulation transfer functions (MTFs) from axial, sagittal, and coronal computed tomography (CT) images of an in-house phantom. An in-house phantom having three metal wires at x-, y-, and z-directions for 3D-MTF evaluation was scanned using GE Revolution EVO 128-slice CT scanner. The tube current was varied (i.e., 100, 200, and 300 mA). While other input parameters were kept constant (i.e., tube voltage of 120 kV, slice thickness of 0.625 mm, rotation time of 1 s). The measurements of MTF were performed automatically using IndoQCT software. MTFs in the x-axis were measured from axial images. MTFs in z-axis were measured from sagittal and coronal images (They were reformatted from axial images using a cubic interpolation). The mean values of 10%-MTF for 100 mA in axial, sagittal and coronal images were 0.70 ± 0.00, 0.69 ± 0.00 and 0.67 ± 0.01 mm-1, respectively. The mean values of 10%-MTF for 200 mA in axial, sagittal and coronal images were 0.71 ± 0.00, 0.69 ± 0.00 and 0.67 ± 0.00 mm-1, respectively. The mean values of 10%-MTF for 300 mA in axial, sagittal and coronal images were 0.70 ± 0.00, 0.69 ± 0.01 and 0.68 ± 0.00 mm-1, respectively. Tube current has no obvious impact on MTF values in the x- and z-axis from axial, sagittal, and coronal images.
Downloads
References
Anam C, Fujibuchi, T, Haryanto F, Budi WS, Sutanto H, Adi K, Dougherty G. Automated MTF measurement in CT images with a simple wire phantom. Pol J Med Phys Eng. 2019;25(3):179-187. doi:10.2478/pjmpe-2019-0024. DOI: https://doi.org/10.2478/pjmpe-2019-0024
Bushberg JT, Seibert JA, Leidholdt EM, Boone JM. The Essential Physics of Medical Imaging Third Edition. Philadelphia: Lippincott Williams & Wilkins.2012.
Setiawan AM, Anam C, Hidayanto E, Sutanto H, Naufal A, Dougherty G. Comparison of noise-power spectrum and modulation-transfer function for CT images reconstructed with iterative and deep learning image reconstructions: An initial experience study. Pol J Med Phys Eng. 2023;29(2)104-112. doi:10.2478/pjmpe-2023-0012. DOI: https://doi.org/10.2478/pjmpe-2023-0012
Raman SP, Mahesh M, Blasko RV, Fishman EK. CT scan parameters and radiation dose: practical advice for radiologists. J Am Coll Radiol. 2013;10(11):840-846. doi:10.1016/j.jacr.2013.05.032. DOI: https://doi.org/10.1016/j.jacr.2013.05.032
Gascho D, Thali MJ, Niemann T. Post-mortem computed tomography: Technical principles and recommended parameter settings for high-resolution imaging. Med Sci Law. 2018;58(1):70-82. doi:10.1177/0025802417747167. DOI: https://doi.org/10.1177/0025802417747167
Pauwels R, Silkosessak O, Jacobs R, Bogaerts R, Bosmans H, Panmekiate S. A pragmatic approach to determine the optimal kVp in cone beam CT: balancing contrast-to-noise ratio and radiation dose. Dentomaxillofac Radiol. 2014;43(5):20140059. doi:10.1259/dmfr.20140059. DOI: https://doi.org/10.1259/dmfr.20140059
González-López A, Campos-Morcillo PA, Lago-Martín JD. Technical Note: An oversampling procedure to calculate the MTF of an imaging system from a bar-pattern image. Med Phys. 2016;43(10):5653. doi:10.1118/1.4963211. DOI: https://doi.org/10.1118/1.4963211
McCollough CH, Yu L, Kofler JM, et al. Degradation of CT Low-Contrast Spatial Resolution Due to the Use of Iterative Reconstruction and Reduced Dose Levels. Radiology. 2015;276(2):499-506. doi:10.1148/radiol.15142047. DOI: https://doi.org/10.1148/radiol.15142047
Anam C, Fujibuchi T, Budi WS, Haryanto F, Dougherty G. An algorithm for automated modulation transfer function measurement using an edge of a PMMA phantom: Impact of field of view on spatial resolution of CT images. J Appl Clin Med Phys. 2018;19(6):244-252. doi:10.1002/acm2.12476. DOI: https://doi.org/10.1002/acm2.12476
Rueckel J, Stockmar M, Pfeiffer F, Herzen J. Spatial resolution characterization of a X-ray microCT system. Appl Radiat Isot. 2014;94:230-234. doi:10.1016/j.apradiso.2014.08.014. DOI: https://doi.org/10.1016/j.apradiso.2014.08.014
Judy PF. The line spread function and modulation transfer function of a computed tomographic scanner. Med Phys. 1976;3(4):233-236. doi:10.1118/1.594283. DOI: https://doi.org/10.1118/1.594283
Kayugawa A, Ohkubo M, Wada S. Accurate determination of CT point-spread-function with high precision. J Appl Clin Med Phys. 2013;14(4):3905. Published 2013 Jul 8. doi:10.1120/jacmp.v14i4.3905. DOI: https://doi.org/10.1120/jacmp.v14i4.3905
Friedman SN, Fung GS, Siewerdsen JH, Tsui BM. A simple approach to measure computed tomography (CT) modulation transfer function (MTF) and noise-power spectrum (NPS) using the American College of Radiology (ACR) accreditation phantom. Med Phys. 2013;40(5):051907. doi:10.1118/1.4800795. DOI: https://doi.org/10.1118/1.4800795
Paruccini N, Villa R, Pasquali C, Spadavecchia C, Baglivi A, Crespi A. Evaluation of a commercial Model Based Iterative reconstruction algorithm in computed tomography. Phys Med. 2017;41:58-70. doi:10.1016/jejmp.2017.05.066. DOI: https://doi.org/10.1016/j.ejmp.2017.05.066
Zahro UM, Anam C, Budi WS, Triadyaksa P, Saragih JH, Rukmana DA. Investigation of Noise Level and Spatial Resolution of CT Images Filtered with a Selective Mean Filter and Its Comparison to an Adaptive Statistical Iterative Reconstruction. Iran J Med Phys. 2021;18(5):374-383. doi:10.22038/IJMP.2020.48813.1786.
Wu P, Boone JM, Hernandez AM, Mahesh M, Siewerdsen JH. Theory, method, and test tools for determination of 3D MTF characteristics in cone-beam CT. Med Phys. 2021;48(6):2772-2789. doi:10.1002/mp.14820. DOI: https://doi.org/10.1002/mp.14820
Anam C, Naufal A, Sutanto H, Dougherty G. Computational phantoms for investigating impact of noise magnitude on modulation transfer function. Indonesian J Elec Eng & Comp Sci. 2022;27(3):1428-1437. doi:10.11591/ijeecs.v27.i3.pp1428-1437. DOI: https://doi.org/10.11591/ijeecs.v27.i3.pp1428-1437
Wang J, Fleischmann D. Improving Spatial Resolution at CT: Development, Benefits, and Pitfalls. Radiology. 2018;289(1):261-262. doi:10.1148/radiol.2018181156. DOI: https://doi.org/10.1148/radiol.2018181156
Park S, Hwang TS, Lee HC. Image quality assessments of focal spot size on radiographic images in dogs. Korean J Vet Res. 2022;62(1), e8. doi:10.14405/kjvr.20210047. DOI: https://doi.org/10.14405/kjvr.20210047
Huda W, Abrahams RB. X-ray-based medical imaging and resolution. AJR Am J Roentgenol. 2015;204(4):W393-W397. doi:10.2214/AJR.14.13126. DOI: https://doi.org/10.2214/AJR.14.13126
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.