Contrast-To-Noise Ratio Differences between Iodine and Calcium on Virtual Monochromatic Images (VMI) In Dual Energy Computed Tomography (DECT)
DOI:
https://doi.org/10.32628/IJSRST24116192Keywords:
virtual monochromatic images (VMI), dual energy computed tomography (DECT), contrast-to-noise ratio (CNR)Abstract
Contrast-to-noise ratio (CNR) is an important parameter in evaluating the quality of virtual monochromatic images (VMI), especially for distinguishing materials with different atomic numbers. This study aims to evaluate the CNR difference between iodine and calcium on VMI images in dual energy computed tomography (DECT) using an in-house phantom. The in-house phantom had ten holes filled with iodine (with concentrations of 5, 7.5, 10, and 15 mg/ml) and calcium (with concentrations of 200, 300, 500, and 600 mg/ml). The in-house phantom was scanned using a GE Revolution DECT type Ultrafast kV Switching. The input parameters were tube voltage of 80/140 kV, tube current of 370 mA, rotation time of 0.5 s, slice thickness of 5 mm, field of view of 25 cm. Projection data were reconstructed to obtain VMI images (with energies of 50, 60, 70, 80, 90, and 100 keV). The results showed that increasing concentrations of iodine and calcium lead to in CNR. At low energies (50-70 keV), the CNR of calcium is higher than that of iodine, while at high energies (80-100 keV), the difference in CNR is more pronounced. In conclusion, calcium showed a more significant increase in CNR compared to iodine, particularly at low energies and high concentrations, with the difference becoming more pronounced at high energies.
Downloads
References
D'Angelo T, Cicero G, Mazziotti S, et al. Dual energy computed tomography virtual monoenergetic imaging: technique and clinical applications. Br J Radiol. 2019;92(1098):20180546.doi:10.1259/bjr.20180546 DOI: https://doi.org/10.1259/bjr.20180546
Cester D, Eberhard M, Alkadhi H, Euler A. Virtual monoenergetic images from dual-energy CT: systematic assessment of task-based image quality performance. Quant Imaging Med Surg. 2022;12(1):726-741. doi:10.21037/qims-21-477 DOI: https://doi.org/10.21037/qims-21-477
Albrecht MH, Vogl TJ, Martin SS, et al. Review of Clinical Applications for Virtual Monoenergetic Dual-Energy CT. Radiology. 2019;293(2):260-271. doi:10.1148/radiol.2019182297 DOI: https://doi.org/10.1148/radiol.2019182297
Tanoue S, Nakaura T, Nagayama Y, Uetani H, Ikeda O, Yamashita Y. Virtual Monochromatic Image Quality from Dual-Layer Dual-Energy Computed Tomography for Detecting Brain Tumors. Korean J Radiol. 2021 Jun;22(6):951-958. https://doi.org/10.3348/kjr.2020.0677 DOI: https://doi.org/10.3348/kjr.2020.0677
Zeng Y, Geng D, Zhang J. Noise-optimized virtual monoenergetic imaging technology of the third-generation dual-source computed tomography and its clinical applications. Quant Imaging Med Surg. 2021;11(11):4627-4643. doi:10.21037/qims-20-1196 DOI: https://doi.org/10.21037/qims-20-1196
Booij R, van der Werf NR, Dijkshoorn ML, van der Lugt A, van Straten M. Assessment of Iodine Contrast-To-Noise Ratio in Virtual Monoenergetic Images Reconstructed from Dual-Source Energy-Integrating CT and Photon-Counting CT Data. Diagnostics (Basel). 2022;12(6):1467. Published 2022 Jun 14. doi:10.3390/diagnostics12061467 DOI: https://doi.org/10.3390/diagnostics12061467
Roele ED, Timmer VCML, Vaassen LAA, van Kroonenburgh AMJL, Postma AA. Dual-Energy CT in Head and Neck Imaging. Curr Radiol Rep. 2017;5(5):19. doi:10.1007/s40134-017-0213-0 DOI: https://doi.org/10.1007/s40134-017-0213-0
Yoo HJ, Hong SH, Choi JY, Chae HD. Comparison of Metal Artifact Reduction Algorithms in Patients with Hip Prostheses: Virtual Monoenergetic Images vs. Orthopedic Metal Artifact Reduction. J Korean Soc Radiol. 2022;83(6):12861297. https://doi.org/10.3348/jksr.2021.0130 DOI: https://doi.org/10.3348/jksr.2021.0130
Gupta A, Obmann VC, Jordan M, et al. CT artifacts after contrast media injection in chest imaging: evaluation of post-processing algorithms, virtual monoenergetic images and their combination for artifact reduction. Quant Imaging Med Surg. 2021;11(1):226-239. doi:10.21037/qims-20-435 DOI: https://doi.org/10.21037/qims-20-435
Tao S, Rajendran K, Zhou W, Fletcher JG, McCollough CH, Leng S. Improving iodine contrast to noise ratio using virtual monoenergetic imaging and prior-knowledge-aware iterative denoising (mono-PKAID). Phys Med Biol. 2019;64(10):105014. Published 2019 May 16. doi:10.1088/1361-6560/ab17fa DOI: https://doi.org/10.1088/1361-6560/ab17fa
Lahuna, L., Greffier, J., Goupil, J., Frandon, J., Pastor, M., De Oliveira, F., Beregi, J. P., & Dabli, D. 2023. Determining the Optimal Energy Level of Virtual Monoenergetic Images in Dual-Source CT for Diagnosis of Bowel Obstruction and Colitis. Diagnostics (Basel, Switzerland). 13(23). 3491. DOI: https://doi.org/10.3390/diagnostics13233491
Lourenco PDM, Rawski R, Mohammed MF, Khosa F, Nicolaou S, McLaughlin P. 2018. Dual-Energy CT Iodine Mapping and 40-keV Monoenergetic Applications in the Diagnosis of Acute Bowel Ischemia. AJR Am J Roentgenol. 211:564-70. DOI: https://doi.org/10.2214/AJR.18.19554
Igarashi K, Imai K, Matsushima S, Yamauchi-Kawaura C, Fujii K. Development and validation of the effective CNR analysis method for evaluating the contrast resolution of CT images. Phys Eng Sci Med. 2024;47(2):717-727. doi:10.1007/s13246-024-01400-5 DOI: https://doi.org/10.1007/s13246-024-01400-5
Kay F. U. (2020). Dual-energy CT and coronary imaging. Cardiovascular diagnosis and therapy, 10(4), 1090–1107. https://doi.org/10.21037/cdt.2020.04.04 DOI: https://doi.org/10.21037/cdt.2020.04.04
Adam SZ, Rabinowich A, Kessner R, Blachar A. Spectral CT of the abdomen: Where are we now? Insights Imaging. 2021;12(1):138. doi:10.1186/s13244-021-01082-7 DOI: https://doi.org/10.1186/s13244-021-01082-7
S. C. Bushong. Radiologic Science for Technologist: Physics, Biology, and Protection. Elsevier Mosby. 2013.
Prabsattroo T, Wachirasirikul K, Tansangworn P, Punikhom P, Sudchai W. The Dose Optimization and Evaluation of Image Quality in the Adult Brain Protocols of Multi-Slice Computed Tomography: A Phantom Study. Journal of Imaging. 2023; 9(12):264. DOI: https://doi.org/10.3390/jimaging9120264
Novitasari D, Anam C, Setiawati E, Amilia R, Naufal A, Reskianto AD. Evaluation of IndoQCT for automatic measurement of contrast-to-noise ratio (CNR) on American college of radiology (ACR) CT phantom images. AIP Conf Proc. 2024;3210:030008. doi:10.1063/5.0228091 DOI: https://doi.org/10.1063/5.0228091
Rahmawati TN, Anam C, Setiawati E, Amilia R, Naufal A, Widhianto RW. Evaluation of contrast-to-noise ratio measurements using IndoQCT on images of the American association of physicists in medicine (AAPM) CT performance phantom. AIP Conf Proc. 2024;3210:030007. doi:10.1063/5.0228089 DOI: https://doi.org/10.1063/5.0228089
Anam C, Amilia R, Naufal A, Fujibuchi T, Dougherty G. A statistical-based automatic detection of a low-contrast object in the ACR CT phantom for measuring contrast-to-noise ratio of CT images. Biomed Phys Eng Express. 2025;11(1):017001. doi:10.1088/2057-1976/ad90e DOI: https://doi.org/10.1088/2057-1976/ad90e9
Baerends E, Oostveen LJ, Smit CT, et al. Comparing dual energy CT and subtraction CT on a phantom: which one provides the best contrast in iodine maps for sub-centimetre details? Eur Radiol. 2018;28(12):5051-5059. doi:10.1007/s00330-018-5496-x DOI: https://doi.org/10.1007/s00330-018-5496-x
Postma AA, Das M, Stadler AA, Wildberger JE. Dual-Energy CT: What the Neuroradiologist Should Know. Curr Radiol Rep. 2015;3(5):16. doi:10.1007/s40134-015-0097-9
Jeffrey Yanof PhD, Tariq Hameed MBBS, Liang Xu MD, Wenwu Li MD, Ying Liu. Evaluation of Calcium and Iodine Sensitivity of Dual Energy CT (with Virtual Monochromatic, Iterative Reconstruction) in Comparison with Single Energy CT. 2012.
Kalender WA. X-ray computed tomography. Phys Med Biol. 2006;51(13):R29-R43. doi:10.1088/0031-9155/51/13/R03 DOI: https://doi.org/10.1088/0031-9155/51/13/R03
McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology. 2015;276(3):637-653. doi:10.1148/radiol.2015142631 DOI: https://doi.org/10.1148/radiol.2015142631
Gutjahr R, Halaweish AF, Yu Z, et al. Human Imaging with Photon Counting-Based Computed Tomography at Clinical Dose Levels: Contrast-to-Noise Ratio and Cadaver Studies. Invest Radiol. 2016;51(7):421-429. doi:10.1097/RLI.0000000000000251 DOI: https://doi.org/10.1097/RLI.0000000000000251
Rajendran K, Petersilka M, Henning A, et al. Virtual monoenergetic imaging using dual-source dual-energy CT: quantitative assessment of image quality and diagnostic performance in patients with liver lesions. European Radiology Experimental. 2020. 4(1), 11.
Postma AA, Das M, Stadler AA, Wildberger JE. Dual-Energy CT: What the Neuroradiologist Should Know. Curr Radiol Rep. 2015;3(5):16. doi:10.1007/s40134-015-0097-9 DOI: https://doi.org/10.1007/s40134-015-0097-9
Johnson TR. Dual-energy CT: general principles. AJR Am J Roentgenol. 2012;199(5 Suppl):S3-S8. doi:10.2214/AJR.12.9116 DOI: https://doi.org/10.2214/AJR.12.9116
Foti G, Ascenti G, Agostini A, et al. Dual-Energy CT in Oncologic Imaging. Tomography. 2024;10(3):299-319. Published 2024 Feb 23. doi:10.3390/tomography10030024. DOI: https://doi.org/10.3390/tomography10030024
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.