Accuracy of Iodine and Calcium Concentrations in Dual Energy Computed Tomography (DECT)

Authors

  • Pingki S. Dewi Departement of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Tembalang, Semarang, Indonesia Author
  • Choirul Anam Departement of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Tembalang, Semarang, Indonesia Author
  • Heri Sutanto Departement of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Tembalang, Semarang, Indonesia Author
  • Ariij Naufal Departement of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Tembalang, Semarang, Indonesia Author
  • Sarah I. Izmi Departement of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Tembalang, Semarang, Indonesia Author
  • Hilda S. Putri Departement of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Tembalang, Semarang, Indonesia Author
  • Revita Dewantari Departement of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Tembalang, Semarang, Indonesia Author
  • Ilham Alkian Smart Material Research Center (SMARC), Diponegoro University, Tembalang, Semarang, Indonesia Author
  • Adiwasono M. B. Setiawan Imaging Radiodiagnostics and Interventional Radiology, Santo Borromeus Hospital, Bandung, Indonesia Author

DOI:

https://doi.org/10.32628/IJSRST24116198

Keywords:

dual energy CT, quantification test, phantom

Abstract

Objective: The purpose of this study was to assess accuracies of iodine and calcium concentrations in dual energy computed tomography (DECT). Method: This study was performed using an in-house phantom made from polyester resin. The in-house phantom had a diameter of 16 cm and had 10 holes filled with iodine (with concentrations of 5, 7.5, 10, and 15 mg/ml), calcium (with concentrations 200, 300, 500, and 600 mg/ml), water, and air. The in-house phantom was scanned by an Ultrafast kV Switching DECT (GE Revolution) with a tube voltage of 80/140 kV, rotation time of 0.5 s, and tube current variations of 200, 250, 300, 335, and 370 mA. Images was reconstructed to a material density image (MDI). The iodine and calcium concentrations were measured using GSI Viewer software and compared with set iodine and calcium concentrations. Results: It was found that absolute percentage error (APE) of concentrations on iodine was <12% and on calcium was <25% for all concentration variations. Hence, the APE of iodine is smaller than that of calcium. It was found that increasing the tube current does not necessarily improve the accuracy of iodine and calcium concentration measurements. Conclusion: Measurements of iodine and calcium concentrations have been carried out on DECT using an in-house phantom. Overall, iodine and calcium quantification in DECT using the in-house phantom is accurate.

Downloads

References

McCollough C.H, Leng S, Yu L, Fletcher J.G. Dual and Multi Energy CT: Principles, Technical Approaches and Clinical Applications. Radiology. 2015; 276 (3): 637-653. DOI: https://doi.org/10.1148/radiol.2015142631

Anam C, Amilia R, Naufal A, Ali M.H. Automatic Measurement of CT Number in the ACR CT Phantom and Its Implementation to Investigate the Impact of Tube Voltage on the Measured CT Number. Radiation Physics and Chemistry. 2024; 216: 111434. DOI: https://doi.org/10.1016/j.radphyschem.2023.111434

Zamora C.A. and Castillo M. Historical Perspective of Imaging Contrast Agents. Magnetic Resonance Imaging Clinics of North America. 2017; 25(4): 685-696. DOI: https://doi.org/10.1016/j.mric.2017.06.002

Bae K.T. Intravenous Contrast Medium Administration and Scan Timing at CT: Considerations and Approaches. Radiology. 2010; 256 (1): 32-61. DOI: https://doi.org/10.1148/radiol.10090908

Anam C., Amilia R., Naufal A., Sutanto H., Dwihapsari Y., Fujibuchi T., Dougherty G. Impact of Noise Level on the Accuracy of Automated Measurement of CT Number Linearity on ACR CT and Computational Phantoms. Journal of Biomedical Physics Engineering. 2023; 13 (4): 353-362. DOI: https://doi.org/10.31661/jbpe.v0i0.2302-1599

Bolus, D.N. Dual Energy Computed Tomographic Scanners: Principles, Comparisons and Contrast, Journal of Computed Assisted Tomography. 2013; 37 (6): 944-7. DOI: https://doi.org/10.1097/RCT.0000000000000028

Taylor R.E., Mager P., Yu N.C., Katz D.P., Brday J.R., Gupta N. Iodine Quantification and Detectability Thresholds among Major Dual-Energy CT Platforms. BJR Radiology. 2019; 92 (1104): 20190530. DOI: https://doi.org/10.1259/bjr.20190530

Shuman W.P., Chan K.T., Busey J.M., Mitsumori L.M., Koprowicz K.M., Dual-Energy CT Aortography with 50% Reduced Iodine Dose versus Single-Energy CT Aortography with Standard Iodine Dose. Academic Radiology. 2016; 23 (5): P611-618. DOI: https://doi.org/10.1016/j.acra.2015.12.019

Tatsugami F., Higaki T., Nakamura Y., Honda Y., Awai K. Dual Energy CT: Minimal Essentials for Radiologists. Japanese Journal of Radiology 2020; 40: 547-559. DOI: https://doi.org/10.1007/s11604-021-01233-2

Toia G.V., Mileto A., Wang C.L., Sahani D.V. Quantitative Dual Energy CT Techniques in the Abdomen. Abdominal Radiology. 2022; 47: 3003-3018. DOI: https://doi.org/10.1007/s00261-021-03266-7

Hesmat A., Barreto I., Rill L., Patel R., Arreola M. Contrast Thresholds for Detection of Various Iodine Concentrations in Subtraction CT and Dual-Energy CT Systems. Journal Applied Clinical Medical Physics. 2022; 24 (1): e13834. DOI: https://doi.org/10.1002/acm2.13834

Pelgrim G.J., Hamersvelt R.W., Willemink M.J., Schmidt B.T., Flohr T. Accuracy of Iodine Quantification using Dual Energy CT in Latest Generation Dual Source and Dual Energy CT. European Radiology. 2017; 27 (9): 3904-3912. DOI: https://doi.org/10.1007/s00330-017-4752-9

Chandarana H., Megibow A.J., Cohen B.A., Srinivasan R., Kim D., Leidecker C., Macari M. Iodine Quantification With Dual-Energy CT: Phantom Study and Preliminary Experience With Renal Masses. American Journal of Roentgenology. 2011; 196 (6): 693-700. DOI: https://doi.org/10.2214/AJR.10.5541

Ehn S., Sellerer T., Muenzel D., Fingerle A.A., Kopp F., Duda M. Assessment of Quantification Accuracy and Image Quality of a Full-body Dual Layer Spectral CT System. Journal of Applied Clinical Medical Physics. 2018; 19 (1): 204-217. DOI: https://doi.org/10.1002/acm2.12243

Kojima T., Shirasaka T., Kondo M., Kato T., Nishie A., Ishigami K., Yabuuchi H. A Novel Fast Kilovoltage Switching Dual Energy CT with Deep Learning: Accuracy of CT Number on Virtual Monochromatic Imaging and Iodine Quantification. Physica Medica. 2021; 81: 253-261. DOI: https://doi.org/10.1016/j.ejmp.2020.12.018

Jacobsen M.C., Schellingerhout D., Wood C.A., Tamm E.P., Godoy M.C. Intermanufacturer Comparison of Dual-Energy CT Iodine Quantification and Monochromatic Attenuation: A Phantom Study. Radiology. 2018; 287 (1): 224-234. DOI: https://doi.org/10.1148/radiol.2017170896

Dell’Aversana S., Ascione R., Vitale R.A., Cavalire F., Porcacro P., Basile L., Napolitano G., Boccalatte M., Sibilio G. CT Coronary Angiography: Technical Approach and Atherosclerotic Plaque Characterization. Journal of Clinical Medicine. 2023; 12 (24): 7615. DOI: https://doi.org/10.3390/jcm12247615

Kumar V., Min J.K., He X., Raman S.V. Computation of Calcium Score with Dual Energy CT: A Phantom Study. Journal of Computer Assisted Tomography. 2017; 41: 156-158. DOI: https://doi.org/10.1097/RCT.0000000000000480

Yagi M., Ueguchi T., Koizumi M., Ogata T., Yamada S., Takahashi Y., Sumida I. Gemstone Spectral Imaging: Determination of CT to ED Conversion Curves for Radiotherapy Treatment Planning. Journal of Applied Clinical Medical Physics. 2013; 14 (5): 173-186. DOI: https://doi.org/10.1120/jacmp.v14i5.4335

Rogers D., Sheth C., Eisenmenger L., Mignogna E. Iopamidol as an Oral Contrast Media for Computed Tomography: A Taste Comparison to Iohexol, Diatrioate sodium and Barium Sulfate. Abdominal Radiology. 2017; 42 (1): 2822-2826. DOI: https://doi.org/10.1007/s00261-017-1226-0

Nehnahi M., Simon G., Moinet R., Piton G., Camelin C., Ronot M., Calame P. Quantifying iodine concentration in the normal bowel wall using dual-energy CT: influence of patient and contrast characteristics. Scientific reports. 2023; 14: 6123. DOI: https://doi.org/10.21203/rs.3.rs-3310461/v1

Li Q., Berman B.P., Hagio T., Gavrielides M.A., Zeng R., Sahiner B., Fang Y., Liu S., Petrick N. Coronary artery calcium quantification using contrast-enhanced dual-energy computed tomography scans in comparison with unenhanced single-energy scans. Physics in Medicine&Biology. 2018; 63 (17): 175006. DOI: https://doi.org/10.1088/1361-6560/aad9be

Thomas C., Schabel C., Krauss B., Weisel K., Bongers M., Claussen C.D., Horger M. Dual-Energy CT: Virtual Calcium Subtraction for Assessment of Bone Marrow Involvement of the Spine in Multiple Myeloma. American Journal of Roentgenology. 2015; 204 (3): -W324-331. DOI: https://doi.org/10.2214/AJR.14.12613

Do T.D., Rahn S., Meizig C., Heubel C.P., Stiller W., Kauczor H.U., Weber T.F., Skornitzke S. Quantitative Calcium-based Assessment of Osteoporosis in Dual-layer spectral CT. European Journal of Radiology. 2024; 178: 11606. DOI: https://doi.org/10.1016/j.ejrad.2024.111606

Ohira S., Karino T., Nitta Y., Hayashi M. How Well Does Dual Energy CT with Fast Kilovoltage Switching Quantify CT Number and Iodine and Calcium Concentrations. Academic Radiology. 2018; 25 (4): 519-528. DOI: https://doi.org/10.1016/j.acra.2017.11.002

Downloads

Published

08-12-2024

Issue

Section

Research Articles

How to Cite

Accuracy of Iodine and Calcium Concentrations in Dual Energy Computed Tomography (DECT). (2024). International Journal of Scientific Research in Science and Technology, 11(6), 435-441. https://doi.org/10.32628/IJSRST24116198

Most read articles by the same author(s)

Similar Articles

1-10 of 249

You may also start an advanced similarity search for this article.