Big Data Analytics and Artificial Intelligence in Healthcare: Transforming Diagnostics, Treatment, and Disease Prevention.

Authors

  • Collins Nwannebuike Nwokedi Umgeni Pschiatric Hospital Medical, Pietermaritzburg, South Africa Author
  • Olakunle Saheed Soyege Independent Researcher, Maryland, USA Author
  • Obe Destiny Balogu Independent Researcher, Lima Ohio, USA Author
  • Ashiata Yetunde Mustapha Kwara State Ministry of Health, Nigeria Author
  • Busayo Olamide Tomoh Independent Researcher, Cleveland, Ohio, USA Author
  • Akachukwu Obianuju Mbata Kaybat Pharmacy and Stores, Benin, Nigeria Author
  • Dorothy Ruth Iguma Regent College, London, UK Author

DOI:

https://doi.org/10.32628/IJSRST25121245

Keywords:

Big Data Analytics, Artificial Intelligence, Healthcare, Diagnostics, Treatment, Disease Prevention

Abstract

The integration of Big Data Analytics and Artificial Intelligence (AI) in healthcare is revolutionizing diagnostics, treatment, and disease prevention. This paper explores how these advanced technologies enhance clinical decision-making, improve patient outcomes, and optimize healthcare processes. By leveraging vast datasets, AI-driven algorithms facilitate early disease detection, predictive analytics, and personalized medicine, significantly reducing diagnostic errors and enabling timely interventions. Furthermore, machine learning models assist in tailoring treatment plans based on patient-specific data, leading to more effective and efficient therapeutic strategies. In disease prevention, big data analytics enable epidemiological surveillance, tracking disease patterns, and identifying at-risk populations. AI-powered predictive models support proactive interventions, reducing the burden of chronic illnesses and infectious diseases. The paper highlights key advancements in AI applications, including deep learning in medical imaging, natural language processing in electronic health records, and real-time analytics in wearable health devices. Despite these transformative benefits, challenges such as data privacy, ethical concerns, and integration complexities remain barriers to widespread adoption. The study concludes that while AI and big data analytics hold immense potential to reshape healthcare, addressing regulatory, infrastructural, and ethical considerations is crucial for sustainable implementation. By fostering interdisciplinary collaboration and robust policy frameworks, healthcare systems can harness these technologies to drive innovation, enhance efficiency, and improve global health outcomes.

Downloads

Download data is not yet available.

References

Adelodun, M. and Anyanwu, E., 2024. Comprehensive risk management and safety strategies in radiation use in medical imaging. Int J Front Med Surg Res, 6. https://doi.org/10.53294/ijfmsr.2024.6.1.0039

Aldoseri, A., Al-Khalifa, K.N. and Hamouda, A.M., 2023. Re-thinking data strategy and integration for artificial intelligence: concepts, opportunities, and challenges. Applied Sciences, 13(12), p.7082.

Bayyapu, S., 2021. Bridging the gap: Overcoming data, technological, and human roadblocks to AI-driven healthcare transformation. Journal of Management (JOM), 8(1), pp.7-14.

Collins, F.S. and Varmus, H., 2015. A new initiative on precision medicine. New England journal of medicine, 372(9), pp.793-795. DOI: 10.1056/NEJMp1500523.

Dash, S., Shakyawar, S.K., Sharma, M. and Kaushik, S., 2019. Big data in healthcare: management, analysis and future prospects. Journal of big data, 6(1), pp.1-25.

Dinov, I.D., 2018. Data science and predictive analytics. Cham, Switzerland. https://doi.org/10.1007/978-3-319-72347-1

Dinov, I.D., 2018. Data science and predictive analytics. Cham, Switzerland. https://doi.org/10.1007/978-3-031-17483-4

Ehidiamen, A. J., & Oladapo, O. O. (2024a). Optimizing contract negotiations in clinical research: Legal strategies for safeguarding sponsors, vendors, and institutions in complex trial environments. World Journal of Biology Pharmacy and Health Sciences, 20(1), 335-348. https://doi.org/10.30574/wjbphs.2024.20.1.0790

Ehidiamen, A. J., & Oladapo, O. O. (2024b). The role of electronic data capture systems in clinical trials: Streamlining data integrity and improving compliance with FDA and ICH/GCP guidelines. World Journal of Biology Pharmacy and Health Sciences, 20(1), 321-334. https://doi.org/10.30574/wjbphs.2024.20.1.0789

Ehidiamen, A. J., & Oladapo, O. O. (2024c). Innovative approaches to risk management in clinical research: Balancing ethical standards, regulatory compliance, and intellectual property concerns. World Journal of Biology Pharmacy and Health Sciences, 20(1), 349-363. https://doi.org/10.30574/wjbphs.2024.20.1.0791

Ehidiamen, A. J., & Oladapo, O. O. (2024d). Enhancing ethical standards in clinical trials: A deep dive into regulatory compliance, informed consent, and participant rights protection frameworks. World Journal of Biology Pharmacy and Health Sciences, 20(1), 309-320. https://doi.org/10.30574/wjbphs.2024.20.1.0788

Ehidiamen, A. J., & Oladapo, O. O. (2024e). The intersection of clinical trial management and patient advocacy: How research professionals can promote patient rights while upholding clinical excellence. World Journal of Biology Pharmacy and Health Sciences, 20(1), 296-308. https://doi.org/10.30574/wjbphs.2024.20.1.0787

Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M. and Thrun, S., 2017. Dermatologist-level classification of skin cancer with deep neural networks. nature, 542(7639), pp.115-118. DOI: 10.1038/nature21056.

Ghassemi, M., Oakden-Rayner, L. and Beam, A.L., 2021. The false hope of current approaches to explainable artificial intelligence in health care. The Lancet Digital Health, 3(11), pp.e745-e750. DOI: 10.1016/S2589-7500(20)30200-8.

Ibikunle, O.E., Usuemerai, P.A., Abass, L.A., Alemede, V., Nwankwo, E.I. and Mbata, A.O., 2024. AI and digital health innovation in pharmaceutical development. Computer Science & IT Research Journal, 5(10), pp.2301-2340.

Ibikunle, O.E., Usuemerai, P.A., Abass, L.A., Alemede, V., Nwankwo, E.I. and Mbata, A.O., 2024. Artificial intelligence in healthcare forecasting: Enhancing market strategy with predictive analytics. International Journal of Applied Research in Social Sciences, 6(10).

Ivanovic, M., Autexier, S. and Kokkonidis, M., 2022, August. AI approaches in processing and using data in personalized medicine. In European Conference on Advances in Databases and Information Systems (pp. 11-24). Cham: Springer International Publishing.

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H. and Wang, Y., 2017. Artificial intelligence in healthcare: past, present and future. Stroke and vascular neurology, 2(4). https://doi.org/10.1136/svn-2017-000101

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H. and Wang, Y., 2017. Artificial intelligence in healthcare: past, present and future. Stroke and vascular neurology, 2(4). DOI: 10.1136/svn-2017-000101.

Kelvin-Agwu, M.C., Adelodun, M.O., Igwama, G.T. and Anyanwu, E.C., 2024. Advancements in biomedical device implants: A comprehensive review of current technologies. Int. J. Front. Med. Surg. Res, 6, pp.19-28.

Kohane, I.S., Drazen, J.M. and Campion, E.W., 2012. A glimpse of the next 100 years in medicine. New England Journal of Medicine, 367(26), pp.2538-2539. DOI: 10.1056/NEJMe1213372.

Leslie, D., Mazumder, A., Peppin, A., Wolters, M.K. and Hagerty, A., 2021. Does “AI” stand for augmenting inequality in the era of covid-19 healthcare?. bmj, 372. DOI: 10.1136/bmj.n304.

Majebi, N.L., Drakeford, O.M., Adelodun, M.O. and Chinyere, E., 2023. Leveraging digital health tools to improve early detection and management of developmental disorders in children. World Journal of Advanced Science and Technology, 4(1), pp.025-032.

McKinney, S.M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G.S., Darzi, A. and Etemadi, M., 2020. International evaluation of an AI system for breast cancer screening. Nature, 577(7788), pp.89-94. DOI: 10.1038/s41586-019-1799-6.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K. and Galstyan, A., 2021. A survey on bias and fairness in machine learning. ACM computing surveys (CSUR), 54(6), pp.1-35. DOI: 10.1145/3457607.

Nasr, M., Islam, M.M., Shehata, S., Karray, F. and Quintana, Y., 2021. Smart healthcare in the age of AI: recent advances, challenges, and future prospects. IEEE access, 9, pp.145248-145270.

Obermeyer, Z. and Emanuel, E.J., 2016. Predicting the future—big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), pp.1216-1219. DOI: 10.1056/NEJMp1606181.

Ojo, O. O., & Kiobel, B. (2024a). The impact of business analytics on healthcare operations: A statistical perspective. World Journal of Biology Pharmacy and Health Sciences, 19(3), 205–217. https://doi.org/10.30574/wjbphs.2024.19.3.0625

Ojo, O. O., & Kiobel, B. (2024b). Optimizing data management in healthcare: Lessons from clinical trials and beyond. World Journal of Biology Pharmacy and Health Sciences, 19(3), 218–231. https://doi.org/10.30574/wjbphs.2024.19.3.0626

Ojo, O. O., & Kiobel, B. (2024c). Emerging trends in survival analysis: Applications and innovations in clinical and epidemiological research. World Journal of Biology Pharmacy and Health Sciences, 19(3), 232–245. https://doi.org/10.30574/wjbphs.2024.19.3.0627

Ojo, O. O., & Kiobel, B. (2024d). Statistical challenges and solutions in multidisciplinary clinical research: Bridging the gap between. World Journal of Biology Pharmacy and Health Sciences, 19(3), 246–258. https://doi.org/10.30574/wjbphs.2024.19.3.0628

Ojo, O. O., & Kiobel, B. (2024e). Data-driven decision-making in public health: The role of advanced statistical models in epidemiology. World Journal of Biology Pharmacy and Health Sciences, 19(3), 259–270. https://doi.org/10.30574/wjbphs.2024.19.3.0629

Ojo, O. O., & Kiobel, B. (2024f). Integrating predictive analytics in clinical trials: A paradigm shift in personalized medicine. World Journal of Biology Pharmacy and Health Sciences, 19(3), 308–320. https://doi.org/10.30574/wjbphs.2024.19.3.0630

Rehman, A., Naz, S. and Razzak, I., 2022. Leveraging big data analytics in healthcare enhancement: trends, challenges and opportunities. Multimedia Systems, 28(4), pp.1339-1371.

Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H.R., Albarqouni, S., Bakas, S., Galtier, M.N., Landman, B.A., Maier-Hein, K. and Ourselin, S., 2020. The future of digital health with federated learning. NPJ digital medicine, 3(1), p.119. DOI: 10.1038/s41746-020-00323-1.

Saria, S., Butte, A. and Sheikh, A., 2018. Better medicine through machine learning: What’s real, and what’s artificial?. PLoS medicine, 15(12), p.e1002721. • https://doi.org/10.1371/journal.pmed.1002721

Shittu, R. A., Ehidiamen, A. J., Ojo, O. O., Zouo, S. J. C., Olamijuwon, J., & Omowole, B. M. (2024). The role of business intelligence tools in improving healthcare patient outcomes and operations. World Journal of Advanced Research and Reviews, 24(2), 1039-1060.

Taoussi, C., Hafidi, I. and Metrane, A., 2023. Medical Pathologies Prediction: Systematic Review and Proposed Approach. arXiv preprint arXiv:2304.00311.

Downloads

Published

20-12-2024

Issue

Section

Research Articles

How to Cite

Big Data Analytics and Artificial Intelligence in Healthcare: Transforming Diagnostics, Treatment, and Disease Prevention. (2024). International Journal of Scientific Research in Science and Technology, 11(6), 1035-1060. https://doi.org/10.32628/IJSRST25121245

Most read articles by the same author(s)

Similar Articles

1-10 of 247

You may also start an advanced similarity search for this article.