Revolutionizing Oncology: Iron Oxide Nanoparticles in Cancer Diagnosis and Treatment
DOI:
https://doi.org/10.32628/IJSRST2512126Keywords:
Iron Oxide Nanoparticles (IONPs), Nanotechnology in Oncology, Cancer Diagnosis, Targeted Drug Delivery, Hyperthermia Therapy, Personalized Cancer TreatmentAbstract
Iron oxide nanoparticles (IONPs) have emerged as a transformative tool in oncology, offering unprecedented opportunities for early cancer diagnosis and effective treatment. These nanoparticles exhibit unique physicochemical properties, including superparamagnetism, biocompatibility, and a large surface area-to-volume ratio. These properties make them particularly suitable for applications such as high-resolution imaging, targeted drug delivery, and hyperthermia therapy. Additionally, their ability to be functionalized with various biomolecules enables precision targeting of cancerous tissues, further enhancing their efficacy. This article delves into the cutting-edge advancements in the utilization of IONPs, examines their multifunctional roles in oncology, addresses the challenges in their clinical translation, and outlines future directions for research and application in this dynamic field.
Downloads
References
F. Bray et al., “Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA. Cancer J. Clin., vol. 74, no. 3, pp. 229–263, May 2024, doi: 10.3322/caac.21834. DOI: https://doi.org/10.3322/caac.21834
J. Ferlay et al., “Cancer statistics for the year 2020: An overview,” Int. J. Cancer, vol. 149, no. 4, pp. 778–789, Aug. 2021, doi: 10.1002/ijc.33588. DOI: https://doi.org/10.1002/ijc.33588
H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA. Cancer J. Clin., vol. 71, no. 3, pp. 209–249, May 2021, doi: 10.3322/caac.21660. DOI: https://doi.org/10.3322/caac.21660
G. Christyani, M. Carswell, S. Qin, and W. Kim, “An Overview of Advances in Rare Cancer Diagnosis and Treatment,” Int. J. Mol. Sci., vol. 25, no. 2, p. 1201, Jan. 2024, doi: 10.3390/ijms25021201. DOI: https://doi.org/10.3390/ijms25021201
B. Liu, H. Zhou, L. Tan, K. T. H. Siu, and X.-Y. Guan, “Exploring treatment options in cancer: tumor treatment strategies,” Signal Transduct. Target. Ther., vol. 9, no. 1, p. 175, Jul. 2024, doi: 10.1038/s41392-024-01856-7. DOI: https://doi.org/10.1038/s41392-024-01856-7
B. Wang et al., “Current advance of nanotechnology in diagnosis and treatment for malignant tumors,” Signal Transduct. Target. Ther., vol. 9, no. 1, p. 200, Aug. 2024, doi: 10.1038/s41392-024-01889-y. DOI: https://doi.org/10.1038/s41392-024-01889-y
L. S. Arias, J. P. Pessan, A. P. M. Vieira, T. M. T. D. Lima, A. C. B. Delbem, and D. R. Monteiro, “Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity,” Antibiotics, vol. 7, no. 2, p. 46, Jun. 2018, doi: 10.3390/antibiotics7020046.
F. Chang and G.-L. Davies, “From 0D to 2D: Synthesis and bio-application of anisotropic magnetic iron oxide nanomaterials,” Prog. Mater. Sci., vol. 144, p. 101267, Aug. 2024, doi: 10.1016/j.pmatsci.2024.101267. DOI: https://doi.org/10.1016/j.pmatsci.2024.101267
Y. Q. Meng et al., “Recent trends in preparation and biomedical applications of iron oxide nanoparticles,” J. Nanobiotechnology, vol. 22, no. 1, p. 24, Jan. 2024, doi: 10.1186/s12951-023-02235-0.
M. Salehirozveh, P. Dehghani, and I. Mijakovic, “Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs),” J. Funct. Biomater., vol. 15, no. 11, p. 340, Nov. 2024, doi: 10.3390/jfb15110340.
N. Ajinkya, X. Yu, P. Kaithal, H. Luo, P. Somani, and S. Ramakrishna, “Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future,” Materials, vol. 13, no. 20, p. 4644, Oct. 2020, doi: 10.3390/ma13204644.
L. S. Ganapathe, M. A. Mohamed, R. Mohamad Yunus, and D. D. Berhanuddin, “Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation,” Magnetochemistry, vol. 6, no. 4, p. 68, Dec. 2020, doi: 10.3390/magnetochemistry6040068. DOI: https://doi.org/10.3390/magnetochemistry6040068
M. D. Nguyen, H.-V. Tran, S. Xu, and T. R. Lee, “Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications,” Appl. Sci., vol. 11, no. 23, p. 11301, Nov. 2021, doi: 10.3390/app112311301. DOI: https://doi.org/10.3390/app112311301
S. Sabale, P. Kandesar, V. Jadhav, R. Komorek, R. K. Motkuri, and X.-Y. Yu, “Recent developments in the synthesis, properties, and biomedical applications of core/shell superparamagnetic iron oxide nanoparticles with gold,” Biomater. Sci., vol. 5, no. 11, pp. 2212–2225, 2017, doi: 10.1039/C7BM00723J. DOI: https://doi.org/10.1039/C7BM00723J
M. Salehirozveh, P. Dehghani, and I. Mijakovic, “Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs),” J. Funct. Biomater., vol. 15, no. 11, p. 340, Nov. 2024, doi: 10.3390/jfb15110340.
C. De La Encarnación, D. Jimenez De Aberasturi, and L. M. Liz-Marzán, “Multifunctional plasmonic-magnetic nanoparticles for bioimaging and hyperthermia,” Adv. Drug Deliv. Rev., vol. 189, p. 114484, Oct. 2022, doi: 10.1016/j.addr.2022.114484. DOI: https://doi.org/10.1016/j.addr.2022.114484
M. Rahman, “Magnetic Resonance Imaging and Iron-oxide Nanoparticles in the era of Personalized Medicine,” Nanotheranostics, vol. 7, no. 4, pp. 424–449, 2023, doi: 10.7150/ntno.86467.
L. Wu, C. Wang, and Y. Li, “Iron Oxide Nanoparticle Targeting Mechanism and its Application in Tumor Magnetic Resonance Imaging and Therapy,” Nanomed., vol. 17, no. 21, pp. 1567–1583, Sep. 2022, doi: 10.2217/nnm-2022-0246.
X. Yan, S. Li, H. Yan, C. Yu, and F. Liu, “IONPs-Based Medical Imaging in Cancer Care: Moving Beyond Traditional Diagnosis and Therapeutic Assessment,” Int. J. Nanomedicine, vol. Volume 18, pp. 1741–1763, Apr. 2023, doi: 10.2147/IJN.S399047.
L. S. Arias, J. P. Pessan, A. P. M. Vieira, T. M. T. D. Lima, A. C. B. Delbem, and D. R. Monteiro, “Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity,” Antibiotics, vol. 7, no. 2, p. 46, Jun. 2018, doi: 10.3390/antibiotics7020046. DOI: https://doi.org/10.3390/antibiotics7020046
L. H. Reddy, J. L. Arias, J. Nicolas, and P. Couvreur, “Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications,” Chem. Rev., vol. 112, no. 11, pp. 5818–5878, Nov. 2012, doi: 10.1021/cr300068p. DOI: https://doi.org/10.1021/cr300068p
J. Zhang, T. Zhang, and J. Gao, “Biocompatible Iron Oxide Nanoparticles for Targeted Cancer Gene Therapy: A Review,” Nanomaterials, vol. 12, no. 19, p. 3323, Sep. 2022, doi: 10.3390/nano12193323. DOI: https://doi.org/10.3390/nano12193323
N. Dhas et al., “Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies,” J. Controlled Release, vol. 333, pp. 188–245, May 2021, doi: 10.1016/j.jconrel.2021.03.021. DOI: https://doi.org/10.1016/j.jconrel.2021.03.021
M.-N. Savari and A. Jabali, “Drug Conjugation Chemistry in Iron Oxide Nanoparticles (IONPs),” in Theranostic Iron-Oxide Based Nanoplatforms in Oncology, in Nanomedicine and Nanotoxicology. , Singapore: Springer Nature Singapore, 2023, pp. 15–34. doi: 10.1007/978-981-99-6507-6_2. DOI: https://doi.org/10.1007/978-981-99-6507-6_2
K. Turcheniuk, A. V. Tarasevych, V. P. Kukhar, R. Boukherroub, and S. Szunerits, “Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles,” Nanoscale, vol. 5, no. 22, p. 10729, 2013, doi: 10.1039/c3nr04131j. DOI: https://doi.org/10.1039/c3nr04131j
M. Beygi et al., “Multifunctional Nanotheranostics for Overcoming the Blood–Brain Barrier,” Adv. Funct. Mater., vol. 34, no. 19, p. 2310881, May 2024, doi: 10.1002/adfm.202310881. DOI: https://doi.org/10.1002/adfm.202310881
E. Zeynalzadeh et al., “Navigating the neurological frontier: Macromolecular marvels in overcoming blood-brain barrier challenges for advanced drug delivery,” Heliyon, vol. 10, no. 15, p. e35562, Aug. 2024, doi: 10.1016/j.heliyon.2024.e35562. DOI: https://doi.org/10.1016/j.heliyon.2024.e35562
A. Avasthi, C. Caro, E. Pozo‑Torres, M. P. Leal, and M. L. García‑Martín, “Magnetic Nanoparticles as MRI Contrast Agents,” in Surface-modified Nanobiomaterials for Electrochemical and Biomedicine Applications, A. R. Puente-Santiago and D. Rodríguez-Padrón, Eds., in Topics in Current Chemistry Collections. , Cham: Springer International Publishing, 2020, pp. 49–91. doi: 10.1007/978-3-030-55502-3_3. DOI: https://doi.org/10.1007/978-3-030-55502-3_3
M. Jeon, M. V. Halbert, Z. R. Stephen, and M. Zhang, “Iron Oxide Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives,” Adv. Mater., vol. 33, no. 23, p. 1906539, Jun. 2021, doi: 10.1002/adma.201906539. DOI: https://doi.org/10.1002/adma.201906539
J. Pellico, J. Ruiz-Cabello, and F. Herranz, “Radiolabeled Iron Oxide Nanomaterials for Multimodal Nuclear Imaging and Positive Contrast Magnetic Resonance Imaging (MRI): A Review,” ACS Appl. Nano Mater., vol. 6, no. 22, pp. 20523–20538, Nov. 2023, doi: 10.1021/acsanm.3c04269. DOI: https://doi.org/10.1021/acsanm.3c04269
L. Wu, C. Wang, and Y. Li, “Iron Oxide Nanoparticle Targeting Mechanism and its Application in Tumor Magnetic Resonance Imaging and Therapy,” Nanomed., vol. 17, no. 21, pp. 1567–1583, Sep. 2022, doi: 10.2217/nnm-2022-0246. DOI: https://doi.org/10.2217/nnm-2022-0246
X. Yan, S. Li, H. Yan, C. Yu, and F. Liu, “IONPs-Based Medical Imaging in Cancer Care: Moving Beyond Traditional Diagnosis and Therapeutic Assessment,” Int. J. Nanomedicine, vol. Volume 18, pp. 1741–1763, Apr. 2023, doi: 10.2147/IJN.S399047.
D. Zhang, J. Zhang, X. Bian, P. Zhang, W. Wu, and X. Zuo, “Iron Oxide Nanoparticle-Based T1 Contrast Agents for Magnetic Resonance Imaging: A Review,” Nanomaterials, vol. 15, no. 1, p. 33, Dec. 2024, doi: 10.3390/nano15010033. DOI: https://doi.org/10.3390/nano15010033
A. Rastogi et al., “Early diagnosis of lung cancer using magnetic nanoparticles-integrated systems,” Nanotechnol. Rev., vol. 11, no. 1, pp. 544–574, Jan. 2022, doi: 10.1515/ntrev-2022-0032.
Md. A. Rayhan, Md. S. Hossen, M. S. Niloy, M. H. Bhuiyan, S. Paul, and Md. S. Shakil, “Biopolymer and Biomaterial Conjugated Iron Oxide Nanomaterials as Prostate Cancer Theranostic Agents: A Comprehensive Review,” Symmetry, vol. 13, no. 6, p. 974, May 2021, doi: 10.3390/sym13060974. DOI: https://doi.org/10.3390/sym13060974
R. Singh, “Nanotechnology based therapeutic application in cancer diagnosis and therapy,” 3 Biotech, vol. 9, no. 11, p. 415, Nov. 2019, doi: 10.1007/s13205-019-1940-0. DOI: https://doi.org/10.1007/s13205-019-1940-0
N. V. S. Vallabani and S. Singh, “Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics,” 3 Biotech, vol. 8, no. 6, p. 279, Jun. 2018, doi: 10.1007/s13205-018-1286-z.
X. Yan, S. Li, H. Yan, C. Yu, and F. Liu, “IONPs-Based Medical Imaging in Cancer Care: Moving Beyond Traditional Diagnosis and Therapeutic Assessment,” Int. J. Nanomedicine, vol. Volume 18, pp. 1741–1763, Apr. 2023, doi: 10.2147/IJN.S399047.
N. Ajinkya, X. Yu, P. Kaithal, H. Luo, P. Somani, and S. Ramakrishna, “Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future,” Materials, vol. 13, no. 20, p. 4644, Oct. 2020, doi: 10.3390/ma13204644.
R. S. Chouhan, M. Horvat, J. Ahmed, N. Alhokbany, S. M. Alshehri, and S. Gandhi, “Magnetic Nanoparticles—A Multifunctional Potential Agent for Diagnosis and Therapy,” Cancers, vol. 13, no. 9, p. 2213, May 2021, doi: 10.3390/cancers13092213. DOI: https://doi.org/10.3390/cancers13092213
R. P. Gambhir, S. S. Rohiwal, and A. P. Tiwari, “Multifunctional surface functionalized magnetic iron oxide nanoparticles for biomedical applications: A review,” Appl. Surf. Sci. Adv., vol. 11, p. 100303, Oct. 2022, doi: 10.1016/j.apsadv.2022.100303. DOI: https://doi.org/10.1016/j.apsadv.2022.100303
A. Singh and V. Kumar, “Iron Oxide Nanoparticles in Biosensors, Imaging and Drug Delivery Applications—A Complete Tool,” in Internet of Things and Big Data Applications, vol. 180, V. E. Balas, V. K. Solanki, and R. Kumar, Eds., in Intelligent Systems Reference Library, vol. 180. , Cham: Springer International Publishing, 2020, pp. 243–252. doi: 10.1007/978-3-030-39119-5_20. DOI: https://doi.org/10.1007/978-3-030-39119-5_20
J. R. Sosa‑Acosta, C. Iriarte‑Mesa, G. A. Ortega, and A. M. Díaz‑García, “DNA-Iron oxide nanoparticles conjugates: functional magnetic nanoplatforms in biomedical applications,” in Surface-modified Nanobiomaterials for Electrochemical and Biomedicine Applications, A. R. Puente-Santiago and D. Rodríguez-Padrón, Eds., in Topics in Current Chemistry Collections. , Cham: Springer International Publishing, 2020, pp. 19–47. doi: 10.1007/978-3-030-55502-3_2. DOI: https://doi.org/10.1007/978-3-030-55502-3_2
N. V. S. Vallabani and S. Singh, “Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics,” 3 Biotech, vol. 8, no. 6, p. 279, Jun. 2018, doi: 10.1007/s13205-018-1286-z.
M. S. Ahmed et al., “Double-receptor-targeting multifunctional iron oxide nanoparticles drug delivery system for the treatment and imaging of prostate cancer,” Int. J. Nanomedicine, vol. Volume 12, pp. 6973–6984, Sep. 2017, doi: 10.2147/IJN.S139011. DOI: https://doi.org/10.2147/IJN.S139011
S. H. Hussein-Al-Ali, M. Z. Hussein, S. Bullo, and P. Arulselvan, “Chlorambucil-Iron Oxide Nanoparticles as a Drug Delivery System for Leukemia Cancer Cells,” Int. J. Nanomedicine, vol. Volume 16, pp. 6205–6216, Sep. 2021, doi: 10.2147/IJN.S312752. DOI: https://doi.org/10.2147/IJN.S312752
M. I. Khan et al., “Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review,” ACS Appl. Bio Mater., vol. 5, no. 3, pp. 971–1012, Mar. 2022, doi: 10.1021/acsabm.2c00002. DOI: https://doi.org/10.1021/acsabm.2c00002
M. Nadeem et al., “Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications,” PLOS ONE, vol. 11, no. 6, p. e0158084, Jun. 2016, doi: 10.1371/journal.pone.0158084. DOI: https://doi.org/10.1371/journal.pone.0158084
D. Predoi, M. Balas, M. A. Badea, S. C. Ciobanu, N. Buton, and A. Dinischiotu, “Dextran-Coated Iron Oxide Nanoparticles Loaded with 5-Fluorouracil for Drug-Delivery Applications,” Nanomaterials, vol. 13, no. 12, p. 1811, Jun. 2023, doi: 10.3390/nano13121811. DOI: https://doi.org/10.3390/nano13121811
E. Alphandéry, “Iron oxide nanoparticles for therapeutic applications,” Drug Discov. Today, vol. 25, no. 1, pp. 141–149, Jan. 2020, doi: 10.1016/j.drudis.2019.09.020.
Z. Farzanegan and M. Tahmasbi, “Evaluating the applications and effectiveness of magnetic nanoparticle-based hyperthermia for cancer treatment: A systematic review,” Appl. Radiat. Isot., vol. 198, p. 110873, Aug. 2023, doi: 10.1016/j.apradiso.2023.110873. DOI: https://doi.org/10.1016/j.apradiso.2023.110873
K. Kucharczyk, K. Kaczmarek, A. Jozefczak, M. Slachcinski, A. Mackiewicz, and H. Dams-Kozlowska, “Hyperthermia treatment of cancer cells by the application of targeted silk/iron oxide composite spheres,” Mater. Sci. Eng. C, vol. 120, p. 111654, Jan. 2021, doi: 10.1016/j.msec.2020.111654. DOI: https://doi.org/10.1016/j.msec.2020.111654
T. Mustafa et al., “Iron oxide nanoparticle-based radio-frequency thermotherapy for human breast adenocarcinoma cancer cells,” Biomater. Sci., vol. 1, no. 8, p. 870, 2013, doi: 10.1039/c3bm60015g. DOI: https://doi.org/10.1039/c3bm60015g
M. Saeed, W. Ren, and A. Wu, “Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances,” Biomater. Sci., vol. 6, no. 4, pp. 708–725, 2018, doi: 10.1039/C7BM00999B.
X. Yan, S. Li, H. Yan, C. Yu, and F. Liu, “IONPs-Based Medical Imaging in Cancer Care: Moving Beyond Traditional Diagnosis and Therapeutic Assessment,” Int. J. Nanomedicine, vol. Volume 18, pp. 1741–1763, Apr. 2023, doi: 10.2147/IJN.S399047.
J. Estelrich and M. A. Busquets, “Iron Oxide Nanoparticles in Photothermal Therapy,” Molecules, vol. 23, no. 7, p. 1567, Jun. 2018, doi: 10.3390/molecules23071567. DOI: https://doi.org/10.3390/molecules23071567
T. Grancharova, P. Zagorchev, and B. Pilicheva, “Iron Oxide Nanoparticles: Parameters for Optimized Photoconversion Efficiency in Synergistic Cancer Treatment,” J. Funct. Biomater., vol. 15, no. 8, p. 207, Jul. 2024, doi: 10.3390/jfb15080207.
T. Grancharova, P. Zagorchev, and B. Pilicheva, “Iron Oxide Nanoparticles as Photothermal Agents: Optimal Parameters for Photoconversion Efficiency and Ability for Synergistic Cancer Treatment,” May 28, 2024, Medicine and Pharmacology. doi: 10.20944/preprints202405.1859.v1. DOI: https://doi.org/10.20944/preprints202405.1859.v1
J. Kadkhoda, A. Tarighatnia, J. Barar, A. Aghanejad, and S. Davaran, “Recent advances and trends in nanoparticles based photothermal and photodynamic therapy,” Photodiagnosis Photodyn. Ther., vol. 37, p. 102697, Mar. 2022, doi: 10.1016/j.pdpdt.2021.102697. DOI: https://doi.org/10.1016/j.pdpdt.2021.102697
H. Peng et al., “Nuclear‐Targeted Multifunctional Magnetic Nanoparticles for Photothermal Therapy,” Adv. Healthc. Mater., vol. 6, no. 7, p. 1601289, Apr. 2017, doi: 10.1002/adhm.201601289. DOI: https://doi.org/10.1002/adhm.201601289
S. Pillarisetti, S. Uthaman, K. M. Huh, Y. S. Koh, S. Lee, and I.-K. Park, “Multimodal Composite Iron Oxide Nanoparticles for Biomedical Applications,” Tissue Eng. Regen. Med., vol. 16, no. 5, pp. 451–465, Oct. 2019, doi: 10.1007/s13770-019-00218-7.
M. Saeed, W. Ren, and A. Wu, “Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances,” Biomater. Sci., vol. 6, no. 4, pp. 708–725, 2018, doi: 10.1039/C7BM00999B.
T. Grancharova, P. Zagorchev, and B. Pilicheva, “Iron Oxide Nanoparticles: Parameters for Optimized Photoconversion Efficiency in Synergistic Cancer Treatment,” J. Funct. Biomater., vol. 15, no. 8, p. 207, Jul. 2024, doi: 10.3390/jfb15080207. DOI: https://doi.org/10.3390/jfb15080207
C. He, J. Lu, and W. Lin, “Hybrid nanoparticles for combination therapy of cancer,” J. Controlled Release, vol. 219, pp. 224–236, Dec. 2015, doi: 10.1016/j.jconrel.2015.09.029. DOI: https://doi.org/10.1016/j.jconrel.2015.09.029
S. Pillarisetti, S. Uthaman, K. M. Huh, Y. S. Koh, S. Lee, and I.-K. Park, “Multimodal Composite Iron Oxide Nanoparticles for Biomedical Applications,” Tissue Eng. Regen. Med., vol. 16, no. 5, pp. 451–465, Oct. 2019, doi: 10.1007/s13770-019-00218-7.
R. Sheervalilou, M. Shirvaliloo, S. Sargazi, and H. Ghaznavi, “Recent advances in iron oxide nanoparticles for brain cancer theranostics: from in vitro to clinical applications,” Expert Opin. Drug Deliv., vol. 18, no. 7, pp. 949–977, Jul. 2021, doi: 10.1080/17425247.2021.1888926.
X. Yan, S. Li, H. Yan, C. Yu, and F. Liu, “IONPs-Based Medical Imaging in Cancer Care: Moving Beyond Traditional Diagnosis and Therapeutic Assessment,” Int. J. Nanomedicine, vol. Volume 18, pp. 1741–1763, Apr. 2023, doi: 10.2147/IJN.S399047.
N. Ajinkya, X. Yu, P. Kaithal, H. Luo, P. Somani, and S. Ramakrishna, “Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future,” Materials, vol. 13, no. 20, p. 4644, Oct. 2020, doi: 10.3390/ma13204644. DOI: https://doi.org/10.3390/ma13204644
E. Aram et al., “Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects,” Nanomaterials, vol. 12, no. 20, p. 3567, Oct. 2022, doi: 10.3390/nano12203567.
M. Saeed, W. Ren, and A. Wu, “Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances,” Biomater. Sci., vol. 6, no. 4, pp. 708–725, 2018, doi: 10.1039/C7BM00999B. DOI: https://doi.org/10.1039/C7BM00999B
M. Salehirozveh, P. Dehghani, and I. Mijakovic, “Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs),” J. Funct. Biomater., vol. 15, no. 11, p. 340, Nov. 2024, doi: 10.3390/jfb15110340.
S. J. Soenen, W. J. Parak, J. Rejman, and B. Manshian, “(Intra)Cellular Stability of Inorganic Nanoparticles: Effects on Cytotoxicity, Particle Functionality, and Biomedical Applications,” Chem. Rev., vol. 115, no. 5, pp. 2109–2135, Mar. 2015, doi: 10.1021/cr400714j. DOI: https://doi.org/10.1021/cr400714j
S. J. Soenen and M. De Cuyper, “Assessing Iron Oxide Nanoparticle Toxicity In Vitro : Current Status and Future Prospects,” Nanomed., vol. 5, no. 8, pp. 1261–1275, Oct. 2010, doi: 10.2217/nnm.10.106. DOI: https://doi.org/10.2217/nnm.10.106
X. Yan, S. Li, H. Yan, C. Yu, and F. Liu, “IONPs-Based Medical Imaging in Cancer Care: Moving Beyond Traditional Diagnosis and Therapeutic Assessment,” Int. J. Nanomedicine, vol. Volume 18, pp. 1741–1763, Apr. 2023, doi: 10.2147/IJN.S399047. DOI: https://doi.org/10.2147/IJN.S399047
M. O. Besenhard et al., “High temperature flow synthesis of iron oxide nanoparticles: Size tuning via reactor engineering,” Chem. Eng. J., vol. 473, p. 144542, Oct. 2023, doi: 10.1016/j.cej.2023.144542. DOI: https://doi.org/10.1016/j.cej.2023.144542
J. B. Oehler, W. Rajapaksha, and H. Albrecht, “Emerging Applications of Nanoparticles in the Diagnosis and Treatment of Breast Cancer,” J. Pers. Med., vol. 14, no. 7, p. 723, Jul. 2024, doi: 10.3390/jpm14070723. DOI: https://doi.org/10.3390/jpm14070723
N. Poonia et al., “Iron oxide nanoparticles: a versatile nanoplatform for the treatment and diagnosis of ovarian cancer,” Ther. Deliv., pp. 1–14, Dec. 2024, doi: 10.1080/20415990.2024.2442301. DOI: https://doi.org/10.1080/20415990.2024.2442301
P. Singh et al., “Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications,” Adv. Healthc. Mater., p. 2403059, Nov. 2024, doi: 10.1002/adhm.202403059.
M. T. Yassin, F. O. Al-Otibi, S. A. Al-Sahli, M. S. El-Wetidy, and S. Mohamed, “Metal Oxide Nanoparticles as Efficient Nanocarriers for Targeted Cancer Therapy: Addressing Chemotherapy-Induced Disabilities,” Cancers, vol. 16, no. 24, p. 4234, Dec. 2024, doi: 10.3390/cancers16244234. DOI: https://doi.org/10.3390/cancers16244234
M. A. Younis, M. A. Alsogaihi, A. A. H. Abdellatif, and I. Saleem, “Nanoformulations in the treatment of lung cancer: current status and clinical potential,” Drug Dev. Ind. Pharm., pp. 1–17, Dec. 2024, doi: 10.1080/03639045.2024.2437562. DOI: https://doi.org/10.1080/03639045.2024.2437562
E. Alphandéry, “Iron oxide nanoparticles for therapeutic applications,” Drug Discov. Today, vol. 25, no. 1, pp. 141–149, Jan. 2020, doi: 10.1016/j.drudis.2019.09.020. DOI: https://doi.org/10.1016/j.drudis.2019.09.020
E. Aram et al., “Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects,” Nanomaterials, vol. 12, no. 20, p. 3567, Oct. 2022, doi: 10.3390/nano12203567. DOI: https://doi.org/10.3390/nano12203567
M. Salehirozveh, P. Dehghani, and I. Mijakovic, “Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs),” J. Funct. Biomater., vol. 15, no. 11, p. 340, Nov. 2024, doi: 10.3390/jfb15110340.
E. Sina et al., “Nanoparticle-Based Treatment and Imaging of Brain Tumors Potentials and Limitations,” in The Textbook of Nanoneuroscience and Nanoneurosurgery, B. Kateb, J. D. Heiss, J. S. Yu, and M. Hsieh, Eds., Cham: Springer Nature Switzerland, 2024, pp. 391–407. doi: 10.1007/978-3-030-80662-0_23. DOI: https://doi.org/10.1007/978-3-030-80662-0_23
P. Singh et al., “Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications,” Adv. Healthc. Mater., p. 2403059, Nov. 2024, doi: 10.1002/adhm.202403059. DOI: https://doi.org/10.1002/adhm.202403059
P. Kumar et al., “Catalyzing innovation: Exploring iron oxide nanoparticles - Origins, advancements, and future application horizons,” Coord. Chem. Rev., vol. 507, p. 215750, May 2024, doi: 10.1016/j.ccr.2024.215750. DOI: https://doi.org/10.1016/j.ccr.2024.215750
Y. Q. Meng et al., “Recent trends in preparation and biomedical applications of iron oxide nanoparticles,” J. Nanobiotechnology, vol. 22, no. 1, p. 24, Jan. 2024, doi: 10.1186/s12951-023-02235-0. DOI: https://doi.org/10.1186/s12951-023-02235-0
S. Pillarisetti, S. Uthaman, K. M. Huh, Y. S. Koh, S. Lee, and I.-K. Park, “Multimodal Composite Iron Oxide Nanoparticles for Biomedical Applications,” Tissue Eng. Regen. Med., vol. 16, no. 5, pp. 451–465, Oct. 2019, doi: 10.1007/s13770-019-00218-7. DOI: https://doi.org/10.1007/s13770-019-00218-7
M. Salehirozveh, P. Dehghani, and I. Mijakovic, “Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs),” J. Funct. Biomater., vol. 15, no. 11, p. 340, Nov. 2024, doi: 10.3390/jfb15110340.
S. A. Sankaranarayanan, A. Thomas, N. Revi, B. Ramakrishna, and A. K. Rengan, “Iron oxide nanoparticles for theranostic applications - Recent advances,” J. Drug Deliv. Sci. Technol., vol. 70, p. 103196, Apr. 2022, doi: 10.1016/j.jddst.2022.103196.
R. Sheervalilou, M. Shirvaliloo, S. Sargazi, and H. Ghaznavi, “Recent advances in iron oxide nanoparticles for brain cancer theranostics: from in vitro to clinical applications,” Expert Opin. Drug Deliv., vol. 18, no. 7, pp. 949–977, Jul. 2021, doi: 10.1080/17425247.2021.1888926. DOI: https://doi.org/10.1080/17425247.2021.1888926
N. V. S. Vallabani and S. Singh, “Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics,” 3 Biotech, vol. 8, no. 6, p. 279, Jun. 2018, doi: 10.1007/s13205-018-1286-z. DOI: https://doi.org/10.1007/s13205-018-1286-z
E. Alphandéry, “Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease,” Nanotoxicology, vol. 13, no. 5, pp. 573–596, May 2019, doi: 10.1080/17435390.2019.1572809. DOI: https://doi.org/10.1080/17435390.2019.1572809
N. Elahi and M. Rizwan, “Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review,” Artif. Organs, vol. 45, no. 11, pp. 1272–1299, Nov. 2021, doi: 10.1111/aor.14027. DOI: https://doi.org/10.1111/aor.14027
M. Rahman, “Magnetic Resonance Imaging and Iron-oxide Nanoparticles in the era of Personalized Medicine,” Nanotheranostics, vol. 7, no. 4, pp. 424–449, 2023, doi: 10.7150/ntno.86467. DOI: https://doi.org/10.7150/ntno.86467
M. Salehirozveh, P. Dehghani, and I. Mijakovic, “Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs),” J. Funct. Biomater., vol. 15, no. 11, p. 340, Nov. 2024, doi: 10.3390/jfb15110340. DOI: https://doi.org/10.3390/jfb15110340
S. A. Sankaranarayanan, A. Thomas, N. Revi, B. Ramakrishna, and A. K. Rengan, “Iron oxide nanoparticles for theranostic applications - Recent advances,” J. Drug Deliv. Sci. Technol., vol. 70, p. 103196, Apr. 2022, doi: 10.1016/j.jddst.2022.103196. DOI: https://doi.org/10.1016/j.jddst.2022.103196
M. Bhange and D. Telange, “Convergence of nanotechnology and artificial intelligence in the fight against liver cancer: a comprehensive review,” Discov. Oncol., vol. 16, no. 1, p. 77, Jan. 2025, doi: 10.1007/s12672-025-01821-y. DOI: https://doi.org/10.1007/s12672-025-01821-y
B. Govindan, M. A. Sabri, A. Hai, F. Banat, and M. A. Haija, “A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach,” Pharmaceutics, vol. 15, no. 3, p. 868, Mar. 2023, doi: 10.3390/pharmaceutics15030868. DOI: https://doi.org/10.3390/pharmaceutics15030868
M. Osial and A. Pregowska, “The Application of Artificial Intelligence in Magnetic Hyperthermia Based Research,” Future Internet, vol. 14, no. 12, p. 356, Nov. 2022, doi: 10.3390/fi14120356. DOI: https://doi.org/10.3390/fi14120356
A. Rastogi et al., “Early diagnosis of lung cancer using magnetic nanoparticles-integrated systems,” Nanotechnol. Rev., vol. 11, no. 1, pp. 544–574, Jan. 2022, doi: 10.1515/ntrev-2022-0032. DOI: https://doi.org/10.1515/ntrev-2022-0032
L. Sun et al., “Smart nanoparticles for cancer therapy,” Signal Transduct. Target. Ther., vol. 8, no. 1, p. 418, Nov. 2023, doi: 10.1038/s41392-023-01642-x. DOI: https://doi.org/10.1038/s41392-023-01642-x
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.