Fabrication of Glycerin-Based Chest Phantom as a Simulation Model for Paediatric Pneumonia

Authors

  • Khoiru Ainin Nisa Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Semarang, Indonesia Author
  • Choirul Anam Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Semarang, Indonesia Author
  • Ilham Alkian Smart Material Research Center (SMARC), Diponegoro University, Semarang, Indonesia Author
  • Arij Naufal Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Semarang, Indonesia Author
  • Heri Sutanto Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Semarang, Indonesia Author

DOI:

https://doi.org/10.32628/IJSRST2512130

Keywords:

Pneumonia, Chest Phantom, CT Thorax, Radiodiagnostics, Image Quality

Abstract

This study aims to fabricate a chest phantom that can replicate pneumonia cases in patients using materials that are easily found in the market. The materials used were polymethyl methacrylate (PMMA), polyurethane (PU) foam, and calcium carbonate which each replace the patient's soft tissue, lungs, and ribs, respectively. The patient's pneumonia case was replicated using glycerin fluid. The fabricated phantom was scanned using a GE Revolution EVO 128 slice CT scanner with a tube current of 100 mA and tube voltages of 80, 100, 120 and 140 kV. Image analysis was performed by comparing phantom images with patient images exposed using the same exposure factor. The parameters of CT number, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were used to compared images of the fabricated phantom and patients. The results showed that the CT numbers produced by soft tissue, bone, and normal lungs in the fabricated phantom were in the range of CT numbers of soft tissue, bone, and normal lungs in the patient image. Meanwhile, the CT number of pneumonia in the phantom (-805 HU) was still different from the CT number of pneumonia in the patient image (-57 to 49 HU). It can be concluded that the fabricated phantom has succeeded in replicating the main anatomical features of the patient (normal soft tissue, bone, and lung). However, replication of pneumonia needs to be improved so that it will be similar to the real case of pneumonia.

Downloads

Download data is not yet available.

References

W. S. Lim, “Pneumonia—Overview,” Encycl. Respir. Med. Second Ed., vol. 4, pp. 185–197, 2021. doi: 10.1016/B978-0-12-801238-3.11636-8.

T. Shi et al., “Global and regional burden of hospital admissions for pneumonia in older adults: A systematic review and meta-analysis,” J. Infect. Dis., vol. 222, no. Suppl 7, pp. S570–S576, 2021. doi: 10.1093/INFDIS/JIZ053.

N. Warlem, D. Abdullah, S. Morawati, Y. F. Yasa, J. Tri Yuspitasari, and R. Yudistira, “Pneumonia Profile in Pulmonary in Patients M. Djamil Hospital,” Nusant. Hasana J., vol. 3, no. 11, pp. 14–22, 2024.

J. Yopento, E. Ernawati, and F. F. Coastera, “Identifikasi Pneumonia Pada Citra X-Ray Paru-Paru Menggunakan Metode Convolutional Neural Network (CNN) Berdasarkan Ekstraksi Fitur Sobel,” Rekursif J. Inform., vol. 10, no. 1, pp. 40–47, 2022. doi: 10.33369/rekursif.v10i1.17247.

I. A. H. van den Berk et al., “Pneumonia pattern recognition on ultra-low-dose CT does not allow for a reliable differentiation between viral and bacterial pneumonia: A multicentre observer study,” Eur. J. Radiol., vol. 167, 2023. doi: 10.1016/j.ejrad.2023.111064.

J. Azadbakht et al., “A review on chest CT scanning parameters implemented in COVID-19 patients: bringing low-dose CT protocols into play,” Egypt. J. Radiol. Nucl. Med., vol. 52, no. 1, pp. 1–10, 2021. doi: 10.1186/s43055-020-00400-1.

H. Yücel and A. Sa, “Investigation of the suitability of new developed epoxy based- phantom for child ’ s tissue equivalency in paediatric radiology,” Nucl. Eng. Technol., vol. 53, pp. 0–7, 2021. doi: 10.1016/j.net.2021.07.002.

L. Savitri and Sunarya, “Optimisasi Proteksi Dan Keselamatan Radiasi Pada Radiologi Anak,” Semin. Keselam. Nukl., no. 33, pp. 17–22, 2017.

T. Pandiangan and I. Bali, “Analisis Dosis Radiasi pada Jarngan Tumor dengan Simulasi Program MCNP-5,” J. Muara Sains, Teknol. Kedokt. dan Ilmu Kesehat., vol. 5, no. 2, pp. 341–350, 2021.

A. F. Maia and A. B. C. Ju, “Characterisation of an Anthropomorphic Chest Phantom for Dose Measurements in Radiology Beams,” Radiat. Phys. Chem., vol. 95, pp. 296–298, 2014. doi: 10.1016/j.radphyschem.2012.12.037.

A. Hunt, A. Ristolainen, P. Ross, R. Öpik, A. Krumme, and M. Kruusmaa, “Low cost anatomically realistic renal biopsy phantoms for interventional radiology trainees,” Eur. J. Radiol., vol. 82, no. 4, pp. 594–600, 2013. doi: 10.1016/j.ejrad.2012.12.020.

A. Mohammed Ali and S. Al-Murshedi, “Low-cost chest paediatric phantom for dose optimisation: construction and validation,” Radiologia, vol. 65, no. 4, pp. 327–337, 2023. doi: 10.1016/j.rx.2022.11.011.

T. Pengpan, N. Rattanarungruangchai, J. Dechjaithat, P. Panthim, P. Siricharuwong, and A. Prapan, “Optimization of Image Quality and Organ Absorbed Dose for Paediatric Chest X-Ray Examination: In-House Developed Chest Phantom Study,” Radiol. Res. Pract., vol. 2022, pp. 1–10, 2022. doi: 10.1155/2022/3482458.

N. H. M. Jamal, I. S. Sayed, and W. S. Syed, “Estimation of organ absorbed dose in paediatric chest X-ray examination: A phantom study,” Radiat. Phys. Chem., vol. 166, pp. 108472, 2020. doi: 10.1016/j.radphyschem.2019.108472.

H. Pereira, “The rationale behind cork properties: A review of structure and chemistry,” BioResources, vol. 10, no. 3, pp. 1–23, 2015. doi: 10.15376/biores.10.3.Pereira.

I. Amini, P. Akhlaghi, and P. Sarbakhsh, “Construction and verification of a physical chest phantom from suitable tissue equivalent materials for computed tomography examinations,” Radiat. Phys. Chem., vol. 150, pp. 51–57, 2018. doi: 10.1016/j.radphyschem.2018.04.020.

M. Arkarima and ‪Mochamad J. Hidayat, “Pemanfaatan material cork untuk desain kemasan parfum,” Prod. J. Desain Prod. (Pengetahuan dan Peranc. Produk), vol. 4, no. 1, pp. 25–32, 2021. doi: 10.24821/productum.v4i1.3907.‬‬‬‬‬‬‬‬‬‬‬

A. Khallouqi, A. Halimi, O. El rhazouani, M. R. Mesradi, K. El Mansouri, and H. Sekkat, “Comparing tissue-equivalent properties of polyester and epoxy resins with PMMA material using Gate/Geant4 simulation toolkit,” Radiat. Phys. Chem., vol. 220, pp. 111702, 2024. doi: 10.1016/j.radphyschem.2024.111702.

A. Khallouqi, A. Halimi, and O. El rhazouani, “Comparative dosimetry of an epoxy resin paediatric head phantom and PMMA phantom for CT imaging,” Radiat. Phys. Chem., vol. 216, pp. 111350, 2024. doi: 10.1016/j.radphyschem.2023.111350.

A. Khallouqi, A. Halimi, and O. El rhazouani, “Evaluating polyester resin as a viable substitute for PMMA in computed tomography dosimetry phantoms,” Nucl. Eng. Technol., vol. 56, no. 9, pp. 3758–3763, 2024. doi: 10.1016/j.net.2024.04.024.

UNICEF, “A Child Dies of Pneumonia every 43 Second ,” UNICEF DATA.

WHO, “Pneumonia in children.” [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/pneumonia#:~:text=Pneumonia is the single largest,aged 1 to 5 years.

A. Mohammed Ali, P. Hogg, S. Johansen, and A. England, “Construction and validation of a low cost paediatric pelvis phantom,” Eur. J. Radiol., vol. 108, pp. 84–91, 2018. doi: 10.1016/j.ejrad.2018.09.015.

H. Heryani, H. Sutanto, C. Anam, and A. D. Reskianto, “Development of Synthetic Bones for ANSI Chest Phantom,” Eur. J. Adv. Eng. Technol., vol. 7, pp. 12–17, 2020.

W. Long, R. Margiana, Z. Haleem Al-Qaim, O. K. A. Alkadir, R. M. Romero Parra, and A. Ghanbarzadeh Kojan, “Investigation of the effect of arteriole clogging of the heart on the characteristics of intravenous blood flow,” Sci. Iran., vol. 30, no. 1 B, pp. 30–38, 2022. doi: 10.24200/sci.2022.59767.6412.

S. C. Bushong, radiologic Science for Technologist. 1998.

D. R. Dance, S. Christofides, A. D. A. Maidment, I. D. McLen, and K. H. Ng, Diagnostic Radiology Physics, 2014. doi: 10.1201/9781482266641-12.

G. D. Putra, I. P. E. Juliantara, and I. M. L. Prasetya, “Analisis Nilai Ct-Number Pada Ct-Scan Thorax Dengan Kasus Covid-19,” JRI (Jurnal Radiogr. Indones., vol. 5, no. 1, pp. 15–20, 2022. doi: 10.55451/jri.v5i1.102.

J. Farkas, “Thoracic Radiology-Consolidation,” The Internet Book of Critical Care. Accessed: Nov. 06, 2024. [Online]. Available: https://emcrit.org/ibcc/consolidation/

Vikas Chougule, B. B Ahuja, and Arati Mulay, “Clinical Case Study Spine Modeling for Minimum Invasive Spine Surgeries,” in International Conference on Precision, Meso, Micro and Nano Engineering (COPEN), 2018, pp. 96–102.

P. Nagpal et al., “Imaging of COVID-19 pneumonia: Patterns, pathogenesis, and advances,” Br. J. Radiol., vol. 93, no. 1113, 2020. doi: 10.1259/bjr.20200538.

M. Becircic et al., “Advancing Phantom Fabrication: Exploring 3D-Printed Solutions for Abdominal Imaging Research,” Appl. Sci., vol. 14, no. 18, 2024. doi: 10.3390/app14188384.

J. Paciorek-sadowska, M. Borowicz, J. Datta, Ł. Piszczyk, P. Kosmela, and I. Zarzyka, “Polyurethane Nanocomposites with Open-Cell Structure Modified with Aluminosilicate Nano-Filler,” Materials (Basel)., vol. 17, 2024. doi: https://doi.org/10.3390/ma17225641.

A. Mohammed Ali, P. Hogg, M. Abuzaid, and A. England, “Impact of acquisition parameters on dose and image quality optimisation in paediatric pelvis radiography—A phantom study,” Eur. J. Radiol., vol. 118, pp. 130–137, 2019. doi: 10.1016/j.ejrad.2019.07.014.

C. Anam, R. Amilia, A. Naufal, T. Fujibuchi, and G. Dougherty, "A statistical-based automatic detection of a low-contrast object in the ACR CT phantom for measuring contrast-to-noise ratio of CT images," Biomed. Phys. Eng. Express, vol. 11, no. 1, pp. 017001, 2025. doi: 10.1088/2057-1976/ad90e9.

Downloads

Published

30-01-2025

Issue

Section

Research Articles

How to Cite

Fabrication of Glycerin-Based Chest Phantom as a Simulation Model for Paediatric Pneumonia. (2025). International Journal of Scientific Research in Science and Technology, 12(1), 276-285. https://doi.org/10.32628/IJSRST2512130

Similar Articles

1-10 of 310

You may also start an advanced similarity search for this article.