Applying the RAWEC Method for Material Selection of Crankshafts

Authors

  • Nguyen Hoang Giang College of Economics and Techniques, Thainguyen University, Vietnam Author
  • Nguyen Duc Chinh College of Economics and Techniques, Thainguyen University, Vietnam Author

DOI:

https://doi.org/10.32628/IJSRST2512147

Keywords:

material selection of crankshaft, MCDM, RAWEC, weight method

Abstract

The material used to manufacture crankshafts has a significant impact on the performance, durability, and lifespan of the product. While various materials can be employed for crankshaft production, selecting the optimal one from numerous available options is a complex task. This study aims to identify the most suitable material among four commonly used ones: 1080 steel, 18CrMo4 steel, 4130 steel, and S48C steel. Fifteen parameters were chosen to characterize each material, referred to as fifteen criteria. To rank the steel types, the RAWEC (Ranking of Alternatives with WEights of Criterion) method was employed. The results indicated that S48C steel is the most appropriate for crankshaft manufacturing.

Downloads

Download data is not yet available.

References

S. Galata, Y. Okur, U. Uzan, E. Unlu, K. Muhziroglu, O. Isın, M. O.Turgut, E. Tuzlu (2022). Web Optimization of Compression Ignition Aviation Engine Crankshaft, International Journal of Aerospace Engineering, vol. 2022, Art. No. 7976691, 1-10, https://doi.org/10.1155/2022/7976691 DOI: https://doi.org/10.1155/2022/7976691

A. Solanki, K. Tamboli, M. J. Zinjuwadia (2011). Crankshaft Design and Optimization- A Review, National Conference on Recent Trends in Engineering & Technology, Gujarat, India, 1-5.

A. Fynn (2022). Mechanism of Crankshaft and its Applications, Journal of applied mechanical engineering, Vol. 11, Art. No. 1000402, https://doi.org/10.35248/2168-9873.22.11.402

K. Aliakbari, M. Imanparast, R. Masoudi Nejad (2019). Microstructure and fatigue fracture mechanism for a heavy-duty truck diesel engine crankshaft, Scientia Iranica B, Vol. 26, No. 6, 3313-3324, https://doi.org/10.24200/sci.2018.50964.1939 DOI: https://doi.org/10.24200/sci.2018.50964.1939

H.N. Gupta, R.C. Gupta, Arun Mittal (2009). Manufacturing processes – Second Editor, New age international publishers.

D. D. Trung (2021). The combination of Taguchi – Entropy – WASPAS - PIV methods for multi-criteria decision making when external cylindrical grinding of 65G steel, Journal of Machine Engineering, Vol. 21, No. 4, 90–105, https://doi.org/10.36897/jme/144260 DOI: https://doi.org/10.36897/jme/144260

A. Sotoudeh-Anvari (2023). Root Assessment Method (RAM): A novel multi-criteria decision making method and its applications in sustainability challenges, Journal of Cleaner Production, Vol. 138695, https://doi.org/10.1016/j.jclepro.2023.138695 DOI: https://doi.org/10.1016/j.jclepro.2023.138695

V. T. N. Uyen, P. X. Thu (2023). The multi-criteria decision-making method: selection of support equipment for classroom instructors, Applied Engineering Letters , Vol.8, No.4, 148-157, https://doi.org/10.18485/aeletters.2023.8.4.2 DOI: https://doi.org/10.18485/aeletters.2023.8.4.2

B. Hatem, K. Ikram (2023). A Methodology for Selection Starting Line-Up of Football Players in Qatar World Cup 2022, European Journal of Sport Sciences, Vol. 2, No. 2, 46-51. DOI: https://doi.org/10.24018/ejsport.2023.2.2.56

D. D.Trung (2022). Multi-criteria decision making of turning operation based on PEG, PSI and CURLI methods, Manufacturing Review, Vol. 9, Art. No. 9 https://doi.org/10.1051/mfreview/2022007 DOI: https://doi.org/10.1051/mfreview/2022007

C. N. Wang, H. T. Tsai, T. P. Ho, V. T. Nguyen, Y. F. Huang (2020). Multi-Criteria Decision Making (MCDM) Model for Supplier Evaluation and Selection for Oil Production Projects in Vietnam, processes, Vol. 8, Art. No. 134; https://doi.org/10.3390/pr8020134 DOI: https://doi.org/10.3390/pr8020134

M. Ozcalici, M. Bumin (2020). An integrated multi-criteria decision making model with Self-Organizing Maps for the assessment of the performance of publicly traded banks in Borsa Istanbul, Applied Soft Computing, Vol. 90, Art. No. 106166, https://doi.org/10.1016/j.asoc.2020.106166 DOI: https://doi.org/10.1016/j.asoc.2020.106166

N. Z. Khan, T. S. A. Ansari, A. N. Siddiquee, Z.A. Khan (2019). Selection of E-learning websites using a novel Proximity Indexed Value (PIV) MCDM method, Journal of Computers in Education, Vol. 6, 241–256, https://doi.org/10.1007/s40692-019-00135-7 DOI: https://doi.org/10.1007/s40692-019-00135-7

D. D. Trung, H. X. Thinh, L. D. Ha (2022). Comparison of the RAFSI and PIV method in multi-criteria decision making: application to turning processes, International Journal of Metrology and Quality Engineering, Vol. 13, Art. No. 4, 1-9, https://doi.org/10.1051/ijmqe/2022014 DOI: https://doi.org/10.1051/ijmqe/2022014

D. D. Trung (2021). Application of EDAS, MARCOS, TOPSIS, MOORA and PIV methods for multi-criteria decision making in milling process, Strojnícky časopis - Journal of Mechanical Engineering, Vol. 71, No. 2, 69-84, https://doi.org/10.2478/scjme-2021-0019 DOI: https://doi.org/10.2478/scjme-2021-0019

D. D. Trung (2021). A combination method for multi-criteria decision making problem in turning process, Manufacturing review, Vol. 8, No. 26, 1-17, https://doi.org/10.1051/mfreview/2021024 DOI: https://doi.org/10.1051/mfreview/2021024

A.Puska, A. Stilic, D. Pamucar, D. Bozanic, M. Nedeljkovic (2024). Introducing a Novel Multi-Criteria Ranking of Alternatives with Weights of Criterion (RAWEC) Model, MethodsX, https://doi.org/10.1016/j.mex.2024.102628 DOI: https://doi.org/10.1016/j.mex.2024.102628

K. Tamura, S. Hwang, T. Yamashita, Y.Matsui, K. Yabuno, S. Takamoto, Y.KIMURA (2019), Development of Technologies for Lightening Crankshafts, Nippon steel technical repORT, No. 122, 145-153.

N. Bhise, M. Ramachandran (2020), Design and Numerical evaluation of crankshaft of diesel engine for total deformation and strain, IOP Conf. Series: Materials Science and Engineering, Vol. 810, No. 012010, 1-6, https://doi.org/10.1088/1757-899X/810/1/012010 DOI: https://doi.org/10.1088/1757-899X/810/1/012010

H. S. Nguyen, T. T. Hieu, N. M. Thang, H. N. Tan, N. T. Can, P.T.Thao, N. C.Bao (2024). Selection of Crankshaft Manufacturing Material by the PIV Method, Engineering, Technology & Applied Science Research, Vol. 14, No. 4, 14848-14853, https://doi.org/10.48084/etasr.7514 DOI: https://doi.org/10.48084/etasr.7514

Downloads

Published

13-02-2025

Issue

Section

Research Articles

How to Cite

Applying the RAWEC Method for Material Selection of Crankshafts. (2025). International Journal of Scientific Research in Science and Technology, 12(1), 558-562. https://doi.org/10.32628/IJSRST2512147

Similar Articles

1-10 of 156

You may also start an advanced similarity search for this article.