Chemical Modification of Chitosan as An Adsorbent for The Removal of Dyes
DOI:
https://doi.org/10.32628/IJSRST2512158Keywords:
Chitosan, Modification, Schiff base, Aldehydes, Adsorption, DesorptionAbstract
Chitosan beads were chemically modified by cross-linking with aldehydes such as valeraldehyde, octanal, o-phthalaldehyde and 9-phenanthrenecarboxaldehyde in order to obtain chitosan Schiff base beads. Chemically modified beads were characterized using FTIR, XRD and elemental analysis (C, H and N). Three cycles of adsorption and desorption studies were performed, modified beads were used for the removal of both Brilliant Blue and Methyl Orange dyes. The chitosan-Schiff base beads exhibited exemplary dye removal efficiency and maintained their ability throughout three cycles. The desorption study was performed using 70% ethanol as a desorbing agent, the desorption study revealed that the modified beads can be regenerated and can be employed as a favourable adsorbent industrially to remove acid dyes from wastewater.
Downloads
References
Ahmad, A., Mohd-Setapar, S. H., Chuong, C. S., Khatoon, A., Wani, W. A., Kumar, R., & Rafatullah, M. (2015). Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC advances, 5(39), 30801-30818. DOI: https://doi.org/10.1039/C4RA16959J
Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process biochemistry, 40(3-4), 997-1026. DOI: https://doi.org/10.1016/j.procbio.2004.04.008
Azlan, K., Saime, W. N. W., & Liew, L. A. I. (2009). Chitosan and chemically modified chitosan beads for acid dye sorption. Journal of Environmental Sciences, 21(3), 296-302. DOI: https://doi.org/10.1016/S1001-0742(08)62267-6
Buthelezi, S. P., Olaniran, A. O., & Pillay, B. (2012). Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates. Molecules, 17(12), 14260-14274. DOI: https://doi.org/10.3390/molecules171214260
Chequer, F. D., De Oliveira, G. R., Ferraz, E. A., Cardoso, J. C., Zanoni, M. B., & de Oliveira, D. P. (2013). Textile dyes: dyeing process and environmental impact. Eco-friendly textile dyeing and finishing, 6(6), 151-176.
Cheung, W. H., Szeto, Y. S., & McKay, G. (2007). Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresource technology, 98(15), 2897-2904. DOI: https://doi.org/10.1016/j.biortech.2006.09.045
dos Santos, J. E., Dockal, E. R., & Cavalheiro, É. T. (2005). Synthesis and characterization of Schiff bases from chitosan and salicylaldehyde derivatives. Carbohydrate polymers, 60(3), 277-282. DOI: https://doi.org/10.1016/j.carbpol.2004.12.008
El Harfi, S., & El Harfi, A. (2017). Classifications, properties and applications of textile dyes: A review. Applied Journal of Environmental Engineering Science, 3(3), 00000-3.
Gavalyan, V. B. (2016). Synthesis and characterization of new chitosan-based Schiff base compounds. Carbohydrate polymers, 145, 37-47. DOI: https://doi.org/10.1016/j.carbpol.2016.02.076
Giri, S. K., Das, N. N., & Pradhan, G. C. (2011). Synthesis and characterization of magnetite nanoparticles using waste iron ore tailings for adsorptive removal of dyes from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389(1-3), 43-49. DOI: https://doi.org/10.1016/j.colsurfa.2011.08.052
Hamed, A. A., Abdelhamid, I. A., Saad, G. R., Elkady, N. A., & Elsabee, M. Z. (2020). Synthesis, characterization and antimicrobial activity of a novel chitosan Schiff bases based on heterocyclic moieties. International journal of biological macromolecules, 153, 492-501. DOI: https://doi.org/10.1016/j.ijbiomac.2020.02.302
Hassaan, M. A., El Nemr, A., & Hassaan, A. (2017). Health and environmental impacts of dyes: mini review. American Journal of Environmental Science and Engineering, 1(3), 64-67.
Islam, M. R., & Mostafa, M. G. (2018). Textile dyeing effluents and environment concerns-a review. Journal of Environmental Science and Natural Resources, 11(1-2), 131-144. DOI: https://doi.org/10.3329/jesnr.v11i1-2.43380
Islam, S., Bhuiyan, M. R., & Islam, M. N. (2017). Chitin and chitosan: structure, properties and applications in biomedical engineering. Journal of Polymers and the Environment, 25, 854-866. DOI: https://doi.org/10.1007/s10924-016-0865-5
Jeon, C., & Höll, W. H. (2003). Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Research, 37(19), 4770-4780. DOI: https://doi.org/10.1016/S0043-1354(03)00431-7
Klotzbach, T. L., Watt, M., Ansari, Y., & Minteer, S. D. (2008). Improving the microenvironment for enzyme immobilization at electrodes by hydrophobically modifying chitosan and Nafion® polymers. Journal of Membrane Science, 311(1-2), 81-88. DOI: https://doi.org/10.1016/j.memsci.2007.11.043
Kulkarni, V. H., Kulkarni, P. V., & Keshavayya, J. (2007). Glutaraldehyde‐crosslinked chitosan beads for controlled release of diclofenac sodium. Journal of Applied Polymer Science, 103(1), 211-217. DOI: https://doi.org/10.1002/app.25161
Lal, S., Arora, S., & Sharma, C. (2016). Synthesis, thermal and antimicrobial studies of some Schiff bases of chitosan. Journal of Thermal Analysis and Calorimetry, 124, 909-916. DOI: https://doi.org/10.1007/s10973-015-5227-3
Lu, Y., He, J., & Luo, G. (2013). An improved synthesis of chitosan bead for Pb (II) adsorption. Chemical Engineering Journal, 226, 271-278. DOI: https://doi.org/10.1016/j.cej.2013.04.078
Ma, G., Qian, B., Yang, J., Hu, C., & Nie, J. (2010). Synthesis and properties of photosensitive chitosan derivatives (1). International Journal of Biological Macromolecules, 46(5), 558-561. DOI: https://doi.org/10.1016/j.ijbiomac.2010.02.009
Malarselvi Rajkumar, I., Asaithambi, D., Chidambaram, R. R., & Rajkumar, P. (2020). Double Schiff bases derivatives of chitosan by selective C-6 and C-2 oxidation mediated by 5-fluorosalicylaldehyde aniline by TG-GC-MS and TG-FTIR analysis. Synthetic Communications, 50(17), 2617-2628. DOI: https://doi.org/10.1080/00397911.2020.1780614
Manzoor, J., & Sharma, M. (2020). Impact of textile dyes on human health and environment. In Impact of textile dyes on public health and the environment (pp. 162-169). IGI Global. DOI: https://doi.org/10.4018/978-1-7998-0311-9.ch008
Mezohegyi, G., van der Zee, F. P., Font, J., Fortuny, A., & Fabregat, A. (2012). Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon. Journal of environmental management, 102, 148-164. DOI: https://doi.org/10.1016/j.jenvman.2012.02.021
Mohammad, S., & Suzylawati, I. (2020). Study of the adsorption/desorption of MB dye solution using bentonite adsorbent coating. Journal of Water Process Engineering, 34, 101155. DOI: https://doi.org/10.1016/j.jwpe.2020.101155
Nady, N., Rehim, M. H. A., & Badawy, A. A. (2023). Dye Removal Membrane from Electrospun Nanofibers of Blended Polybutylenesuccinate and Sulphonated Expanded Polystyrene Waste. DOI: https://doi.org/10.21203/rs.3.rs-3010428/v1
Ogugbue, C. J., & Sawidis, T. (2011). Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluent. Biotechnology research international, 2011. DOI: https://doi.org/10.4061/2011/967925
Paula, H. C., Silva, R. B., Santos, C. M., Dantas, F. D., de Paula, R. C., de Lima, L. R., ... & Dias, F. G. (2020). Eco-friendly synthesis of an alkyl chitosan derivative. International Journal of Biological Macromolecules, 163, 1591-1598. DOI: https://doi.org/10.1016/j.ijbiomac.2020.08.058
Ponnusami, V., Vikram, S., & Srivastava, S. N. (2008). Guava (Psidium guajava) leaf powder: novel adsorbent for removal of methylene blue from aqueous solutions. Journal of hazardous materials, 152(1), 276-286. DOI: https://doi.org/10.1016/j.jhazmat.2007.06.107
Russo, T., Fucile, P., Giacometti, R., & Sannino, F. (2021). Sustainable removal of contaminants by biopolymers: a novel approach for wastewater treatment. Current state and future perspectives. Processes, 9(4), 719. DOI: https://doi.org/10.3390/pr9040719
Sadiq, A. C., Rahim, N. Y., & Suah, F. B. M. (2020). Adsorption and desorption of malachite green by using chitosan-deep eutectic solvents beads. International journal of biological macromolecules, 164, 3965-3973. DOI: https://doi.org/10.1016/j.ijbiomac.2020.09.029
Slama, H. B., Chenari Bouket, A., Pourhassan, Z., Alenezi, F. N., Silini, A., Cherif-Silini, H., ... & Belbahri, L. (2021). Diversity of synthetic dyes from textile industries, discharge impacts, and treatment methods. Applied Sciences, 11(14), 6255. DOI: https://doi.org/10.3390/app11146255
Srivastava, A., Shukla, S., Jangid, N. K., Srivastava, M., & Vishwakarma, R. (2022). World of the Dye. In Research Anthology on Emerging Techniques in Environmental Remediation (pp. 493-507). IGI Global. DOI: https://doi.org/10.4018/978-1-6684-3714-8.ch026
Thakre, D., Jagtap, S., Bansiwal, A., Labhsetwar, N., & Rayalu, S. (2010). Synthesis of La-incorporated chitosan beads for fluoride removal from water. Journal of Fluorine Chemistry, 131(3), 373-377. DOI: https://doi.org/10.1016/j.jfluchem.2009.11.024
Tirkistani, F. A. (1998). Thermal analysis of some chitosan Schiff bases. Polymer degradation and stability, 60(1), 67-70. DOI: https://doi.org/10.1016/S0141-3910(97)00020-7
Treviño-Cordero, H., Juárez-Aguilar, L. G., Mendoza-Castillo, D. I., Hernández-Montoya, V., Bonilla-Petriciolet, A., & Montes-Morán, M. A. (2013). Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water. Industrial Crops and Products, 42, 315-323. DOI: https://doi.org/10.1016/j.indcrop.2012.05.029
Yin, X., Chen, J., Yuan, W., Lin, Q., Ji, L., & Liu, F. (2012). Preparation and antibacterial activity of Schiff bases from O-carboxymethyl chitosan and para-substituted benzaldehydes. Polymer bulletin, 68, 1215-1226. DOI: https://doi.org/10.1007/s00289-011-0599-4
Yuvaraja, G., Pang, Y., Chen, D. Y., Kong, L. J., Mehmood, S., Subbaiah, M. V., ... & Reddy, G. M. (2019). Modification of chitosan macromolecule and its mechanism for the removal of Pb (II) ions from aqueous environment. International journal of biological macromolecules, 136, 177-188. DOI: https://doi.org/10.1016/j.ijbiomac.2019.06.016
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0