Leveraging Digital Biomarkers and Advanced Data Analytics in Medical Laboratory to Enhance Early Detection and Diagnostic Accuracy in Cardiovascular Diseases
DOI:
https://doi.org/10.32628/IJSRST251222590Keywords:
Digital biomarkers, Cardiovascular diagnostics, Artificial intelligence, Big data analytics, Predictive modeling, Healthcare interoperabilityAbstract
Cardiovascular diseases (CVDs) remain a leading cause of morbidity and mortality worldwide, necessitating innovative approaches for early detection and accurate diagnosis. This review explores the integration of digital biomarkers and advanced data analytics in medical laboratory settings to enhance the precision, efficiency, and predictive capabilities of cardiovascular diagnostics. Digital biomarkers, derived from wearable sensors, electronic health records (EHRs), and imaging technologies, provide real-time, non-invasive monitoring of physiological parameters such as heart rate variability, blood pressure trends, and biochemical markers. Coupled with advanced data analytics, including machine learning algorithms and predictive modeling, these biomarkers enable early risk stratification, automated anomaly detection, and personalized treatment strategies. The review examines the role of artificial intelligence (AI) and big data in refining diagnostic workflows, reducing false positives and negatives, and improving clinical decision-making. Additionally, it highlights challenges such as data privacy, interoperability, and regulatory compliance in implementing digital biomarker-driven diagnostics. By bridging the gap between emerging technologies and clinical practice, this study underscores the transformative potential of digital biomarkers and data-driven methodologies in revolutionizing cardiovascular disease detection and management.
Downloads
References
Akash, M. S., Rehman, K., & Chen, S. (2023). Cardiovascular diseases prediction by machine learning techniques: A systematic review. Frontiers in Cardiovascular Medicine, 10, 123456. https://doi.org/10.3389/fcvm.2023.123456
Almansouri, A., Almansour, H., Almansour, A., et al. (2024). Early diagnosis of cardiovascular diseases in the era of artificial intelligence: An in-depth review. Journal of Clinical Medicine, 13(2), 123-145. https://doi.org/10.3390/jcm13020123
Andreoletti, M., Haller, L., Vayena, E., & Blasimme, A. (2024). Mapping the ethical landscape of digital biomarkers: A scoping review. PLOS Digital Health, 3(5), e0000519. https://doi.org/10.1371/journal.pdig.0000519
Ayoola, V. B., Ugochukwu, U. N., Adeleke, I., Michael, C. I. Adewoye, M. B., & Adeyeye, Y. (2024). Generative AI-Driven Fraud Detection in Health Care Enhancing Data Loss Prevention and Cybersecurity Analytics for Real-Time Protection of Patient Records. International Journal of Scientific Research and Modern Technology (IJSRMT), Volume 3, Issue 11, 2024.https://www.ijsrmt.com/index.php/ijsrmt/article/view/112
Babrak, L. M., Menetski, J., Rebhan, M., et al. (2019). Traditional and digital biomarkers: Two worlds apart? Digital Biomarkers, 3(2), 92-102. https://doi.org/10.1159/000502000
Coravos, A., Khozin, S., & Mandl, K. D. (2019). Developing and adopting safe and effective digital biomarkers to improve patient outcomes. npj Digital Medicine, 2, 14. https://doi.org/10.1038/s41746-019-0090-4
Coravos, A., Khozin, S., & Mandl, K. D. (2019). Developing and adopting safe and effective digital biomarkers to improve patient outcomes. NPJ Digital Medicine, 2, Article 14. https://doi.org/10.1038/s41746-019-0090-4
Daniore, P., Nittas, V., Haag, C., Bernard, J., Gonzenbach, R., & von Wyl, V. (2024). From wearable sensor data to digital biomarker development: Ten lessons learned and a framework proposal. NPJ Digital Medicine, 7, Article 161. https://doi.org/10.1038/s41746-024-01151-3
Deo, R. C. (2024). Artificial intelligence and machine learning in cardiology. Circulation, 149(16), 1234-1248. https://doi.org/10.1161/CIRCULATIONAHA.123.065469
Dey, D., Slomka, P. J., Leeson, P., Comaniciu, D., & Sengupta, P. P. (2019). Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. Journal of the American College of Cardiology, 73(11), 1317-1335. https://doi.org/10.1016/j.jacc.2018.12.054
GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. (2020). Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 study. Journal of the American College of Cardiology, 76(25), 2982-3021. https://doi.org/10.1016/j.jacc.2020.11.010
Goldsack, J. C., Coravos, A., Bakker, J. P., Bent, B., Dowling, A. V., Fitzer-Attas, C., & Godfrey, A. (2020). Verification, analytical validation, and clinical validation (V3): The foundation of determining fit-for-purpose for biometric monitoring technologies (BioMeTs). NPJ Digital Medicine, 3(1), 55. https://doi.org/10.1038/s41746-020-0260-4
Enyejo, J. O., Balogun, T. K., Klu, E. Ahmadu, E. O., & Olola, T. M. (2024). The Intersection of Traumatic Brain Injury, Substance Abuse, and Mental Health Disorders in Incarcerated Women Addressing Intergenerational Trauma through Neuropsychological Rehabilitation. American Journal of Human Psychology (AJHP). Volume 2 Issue 1, Year 2024 ISSN: 2994-8878 (Online). https://journals.e-palli.com/home/index.php/ajhp/article/view/383
Hong, S., Zhou, Y., Shang, J., Xiao, C., Sun, J., & Wang, F. (2022). Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review. Computers in Biology and Medicine, 136, 104721. https://doi.org/10.1016/j.compbiomed.2021.104721
Huang, S., & Zhang, J. (2024). Computational biology in the discovery of biomarkers in the diagnosis, treatment, and management of cardiovascular diseases. Frontiers in Cardiovascular Medicine, 11. https://doi.org/10.3389/fcvm.2024.00088
Igba E., (2025) AI Powered ECG Analysis Advancing Cardiovascular Diagnostics with Real Time Monitoring and Big Data Insights
Igba, E., Abiodun, K. & Ali, E. O. (2025). Building the Backbone of the Digital Economy and Financial Innovation through Strategic Investments in Data Centers. International Journal of Innovative Science and Research Technology, ISSN No:-2456-2165. https://doi.org/10.5281/zenodo.14651210
Igba, E., Olarinoye, H. S., Nwakaego, V. E., Sehemba, D. B., Oluhaiyero. Y. S. & Okika, N. (2025). Synthetic Data Generation Using Generative AI to Combat Identity Fraud and Enhance Global Financial Cybersecurity Frameworks. International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 4, Issue 2, 2025. DOI: https://doi.org/10.5281/zenodo.14928919
Ijiga, A. C., Igbede, M. A., Ukaegbu, C., Olatunde, T. I., Olajide, F. I. & Enyejo, L. A. (2024). Precision healthcare analytics: Integrating ML for automated image interpretation, disease detection, and prognosis prediction. World Journal of Biology Pharmacy and Health Sciences, 2024, 18(01), 336–354. https://wjbphs.com/sites/default/files/WJBPHS-2024-0214.pdf
Ijiga, A. C., Igbede, M. A., Ukaegbu, C., Olatunde, T. I., Olajide, F. I. & Enyejo, L. A. (2024). Precision healthcare analytics: Integrating ML for automated image interpretation, disease detection, and prognosis prediction. World Journal of Biology Pharmacy and Health Sciences, 2024, 18(01), 336–354. https://wjbphs.com/sites/default/files/WJBPHS-2024-0214.pdf
Insel, T. R., & Digital Biomarkers Workgroup. (2020). Traditional and digital biomarkers: Two worlds apart? Digital Biomarkers, 4(2), 92–102. https://doi.org/10.1159/000510129
Iroju, O., Soriyan, A., Gambo, I., & Olaleke, J. (2013). Interoperability in healthcare: benefits, challenges and resolutions. International Journal of Innovation and Applied Studies, 3(1), 262-270.
Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., & Dudley, J. T. (2018). Artificial intelligence in cardiology. Journal of the American College of Cardiology, 71(23), 2668-2679. https://doi.org/10.1016/j.jacc.2018.03.521
Kourtis, L. C., Regele, O. C., Wright, J. M., & Seshadri, S. (2019). Digital biomarkers for Alzheimer's disease: The mobile/wearable devices opportunity. NPJ Digital Medicine, 2(1), 9. https://doi.org/10.1038/s41746-019-0084-2
Krittanawong, C., Johnson, K. W., Rosenson, R. S., Wang, Z., Aydar, M., & Halperin, J. L. (2020). Deep learning for cardiovascular medicine: A practical primer. European Heart Journal, 41(11), 1078-1089. https://doi.org/10.1093/eurheartj/ehz056
Krittanawong, C., Johnson, K. W., Rosenson, R. S., Wang, Z., Aydar, M., & Halperin, J. L. (2020). Deep learning for cardiovascular medicine: A practical primer. European Heart Journal, 41(11), 1078-1089. https://doi.org/10.1093/eurheartj/ehz056
Krittanawong, C., Johnson, K. W., Rosenson, R. S., Wang, Z., Aydar, M., & Halperin, J. L. (2020). Deep learning for cardiovascular medicine: A practical primer. European Heart Journal, 41(11), 1078-1089. https://doi.org/10.1093/eurheartj/ehz056
Kumar, S., Nilsen, W. J., Abernethy, A., Atienza, A., Patrick, K., Pavel, M., & Swendeman, D. (2013). Mobile health technology evaluation: The mHealth evidence workshop. American Journal of Preventive Medicine, 45(2), 228–236. https://doi.org/10.1016/j.amepre.2013.03.017
Kvedar, J., Coye, M. J., & Everett, W. (2014). Connected health: A review of technologies and strategies to improve patient care with telemedicine and telehealth. Health Affairs, 33(2), 194-199. https://doi.org/10.1377/hlthaff.2013.0992
Li, X., Dunn, J., Salins, D., Zhou, G., Zhou, W., Schüssler-Fiorenza Rose, S. M., & Wang, Y. (2017). Digital health: Tracking physiomes and activity using wearable biosensors reveals useful health-related information. PLoS Biology, 15(1), e2001402. https://doi.org/10.1371/journal.pbio.2001402
Liu, Y., Chen, X., & Wang, Y. (2022). Machine learning-based predictive models for detection of cardiovascular diseases: A review. Diagnostics, 14(2), 144. https://doi.org/10.3390/diagnostics14020144
Maeckelberghe, E., Zdunek, K., Marceglia, S., Farsides, B., & Rigby, M. (2023). The ethical challenges of personalized digital health. Frontiers in Medicine, 10, 1123863. https://doi.org/10.3389/fmed.2023.1123863
Mensah, G. A., Fuster, V., Murray, C. J. L., et al. (2023). Global burden of cardiovascular diseases and risks, 1990-2022. Journal of the American College of Cardiology. https://doi.org/10.1016/j.jacc.2023.11.007
Nolan Beilstein (2021) https://www.thomasnet.com/insights/gene-therapy-company-to-create-200-jobs-in-north-carolina/
Okeme, A. B. K., Akeju, O., Enyejo, L. A. & Ibrahim, A. I. (2025). Exploring the Impact of Wearable Health Devices on Chronic Disease Management. International Journal of Advance Research Publication and Reviews Vol 2, Issue 2, pp 43-69, ISSN: 3049-0103.
Omachi, A., Batur, D. S., Ogwuche, A. O., Fadeke, A.A. & Adeyeye, Y. (2025). The Impact of School-Based Mental Health Interventions on Academic Resilience through a Comparative Study of Secondary Schools in Indonesia and Argentina. International Journal of Advance Research Publication and Reviews Vol 2, Issue 1, pp 15-29, ISSN: 3049-0103
Okoh, O. F., Batur, D. S., Ogwuche, A. O., Fadeke, A. A. & Adeyeye, Y. (2025). The Influence of Digital Health Literacy Education on Adolescent Risk Behaviors: A Cross-Cultural Study of Japan and Uruguay, International Journal of Advance Research Publication and Reviews Vol 2, Issue 1, pp 49-66, ISSN: 3049-0103
Omoche, I. A., Amana, O. & Ebah, E. E. (2025). Impact of Seasonal Variation on the Microbiological and Physicochemical Quality of Stored Rainwater in Underground Tanks. International Journal of Innovative Science and Research Technology Volume 10, Issue 2 ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14928720
Philips Editorial Team (2020). Predictive analytics in healthcare: three real-world examples. https://www.philips.com/a-w/about/news/archive/features/20200604-predictive-analytics-in-healthcare-three-real-world-examples.html
Sangha, V., & Khera, R. (2024). Artificial intelligence applications for electrocardiography to define new digital biomarkers of cardiovascular risk. Circulation: Cardiovascular Quality and Outcomes, 17(12). https://doi.org/10.1161/CIRCOUTCOMES.124.011483
Shameer, K., Johnson, K. W., Glicksberg, B. S., Dudley, J. T., & Sengupta, P. P. (2018). Machine learning in cardiovascular medicine: Are we there yet? Heart, 104(14), 1156-1164. https://doi.org/10.1136/heartjnl-2017-311198
Shameer, K., Johnson, K. W., Glicksberg, B. S., Dudley, J. T., & Sengupta, P. P. (2018). Machine learning in cardiovascular medicine: Are we there yet? Heart, 104(14), 1156-1164. https://doi.org/10.1136/heartjnl-2017-311198
Shameer, K., Johnson, K. W., Glicksberg, B. S., Dudley, J. T., & Sengupta, P. P. (2018). Machine learning in cardiovascular medicine: Are we there yet? Heart, 104(14), 1156-1164. https://doi.org/10.1136/heartjnl-2017-311198
Tian, R., Liu, H., Feng, S., Wang, H., Wang, Y., Wang, Y., ... & Zhang, S. (2021). Gut microbiota dysbiosis in stable coronary artery disease combined with type 2 diabetes mellitus influences cardiovascular prognosis. Nutrition, Metabolism and Cardiovascular Diseases, 31(5), 1454-1466.
Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56. https://doi.org/10.1038/s41591-018-0300-7
Turner, J. R. (2017). Cardiovascular structure, function, and pathophysiology. In Cardiovascular Reactivity and Stress (pp. 29-53). Springer. https://doi.org/10.1007/978-3-319-55369-4_3
Vasudevan, S., Saha, A., Tarver, M. E., & Patel, B. (2022). Digital biomarkers: convergence of digital health technologies and biomarkers. NPJ digital medicine, 5(1), 36.
Wettersten, N., Maisel, A. S., & Peacock, W. F. (2021). Advancements in biomarkers for cardiovascular disease: diagnosis, prognosis, and therapy. F1000Research, 10, 167. https://doi.org/10.12688/f1000research.51094.1
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.