Development and Nutritional Profiling of Peanut Curd: Exploring the Impact of Microbial Inoculants on Texture, Flavour, and Functional Properties
DOI:
https://doi.org/10.32628/IJSRST251222717Keywords:
Peanut curd, Plant-based products, Lactobacillus sp., Ginger microbiota, Chili microbiota, Controlled fermentation, Probiotic viability, Nutritional properties, Cholesterol-free, Lactose-free, Sustainable foodAbstract
The growing demand for ethical, health-conscious, and sustainable food alternatives has driven interest in plant-based products like peanut curd. This study explores the development of peanut curd using a novel inoculum comprising Lactobacillus sp., Propionibacterium acnes, natural microbiota from ginger and chili extracts, and a commercial dairy culture (Commercial curd). Each component contributed distinct metabolic activities, improving texture, flavour, and nutritional properties. Controlled fermentation revealed that Lactobacillus sp. produced a smooth-textured, tangy curd with excellent probiotic viability. Ginger microbiota added a warm, subtly spicy flavour, while chili microbiota created a bold, tangy, and spicy profile. However, P. acnes showed slower fermentation and less favourable sensory attributes, limiting its potential. Peanut curd samples were cholesterol-free and rich in proteins, carbohydrates, and fixed fats. Variants with ginger and chili demonstrated enhanced nutritional profiles, including high reducing sugar, flavonoid, and phytosterol content. Biochemical analysis revealed significant differences between peanut curds and commercial curd. Ginger and chili variants had the highest vitamin C content (85 mg/100 mL and 75 mg/100 mL, respectively) and rich metabolic diversity. Peanut curds had lower protein concentrations (0.8–1.0 mg/mL) than to commercial curd (1.2 mg/mL) but were cholesterol-free. Moisture content was slightly lower in peanut curds (80–83%) than commercial curd (84%). These results underscore peanut curd’s potential as a nutritious, lactose-free, and environmentally sustainable alternative, particularly with ginger and chili variants offering superior nutritional and functional benefits.
Downloads
References
Poore, J., & Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987–992. https://doi.org/10.1126/science.aaq0216
Shiby, V. K., & Mishra, H. N. (2013). Fermented milks and milk products as functional foods—A review. Critical Reviews in Food Science and Nutrition, 53(5), 482–496. https://doi.org/10.1080/10408398.2010.547398
Xu, X., Sharma, P., Shu, S., Lin, T. S., Ciais, P., Tubiello, F. N., Smith, P., Campbell, N., & Jain, A. K. (2020). Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nature Food, 1(9), 775–783. https://doi.org/10.1038/s43016-020-00166-8
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506–514. https://doi.org/10.1038/nrgastro.2014.66
Shah, N. P. (2007). Functional cultures and health benefits. International Dairy Journal, 17(11), 1262–1277. https://doi.org/10.1016/j.idairyj.2007.01.014
Filannino, P., Bai, Y., & Gobbetti, M. (2018). Metabolic and functional paths of lactic acid bacteria in plant foods: Get out of the labyrinth. Current Opinion in Biotechnology, 49, 64–72. https://doi.org/10.1016/j.copbio.2017.07.013
Aiking, H., & de Boer, J. (2020). The next protein transition. Trends in Food Science & Technology, 105, 515–522. https://doi.org/10.1016/j.tifs.2018.07.008
Tamime, A. Y., & Robinson, R. K. (2007). Yoghurt: Science and technology (3rd ed.). CRC Press.
Li, C., Lu, L., Wu, X., & Li, H. (2018). Microbial diversity and volatile compound analysis of soybean curd fermented by lactic acid bacteria and Bacillus subtilis. Journal of Food Science and Technology, 55(6), 2350–2361. https://doi.org/10.1007/s13197-018-3132-9
Tamang, J. P., & Samuel, D. (2020). Dietary cultures and fermentation: Future prospects of ethnic fermented foods. Current Opinion in Food Science, 31, 40–48. https://doi.org/10.1016/j.cofs.2020.03.003
Holzapfel, W. H., Haberer, P., Geisen, R., Björkroth, J., & Schillinger, U. (2001). Taxonomy and important features of probiotic microorganisms in food and nutrition. The American Journal of Clinical Nutrition, 73(2), 365S–373S. https://doi.org/10.1093/ajcn/73.2.365S
Leroy, F., & De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology, 15(2), 67–78. https://doi.org/10.1016/j.tifs.2003.09.004
Singh, P., Medema, M. H., & Verma, P. C. (2018). Fermented foods: An overview of their impact on human gut microbiota and health. Food Research International, 112, 134–143. https://doi.org/10.1016/j.foodres.2018.06.034
Gänzle, M. G. (2015). Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2, 106–117. https://doi.org/10.1016/j.cofs.2015.03.001
Cappellozza, S. (2019). Sensory evaluation of fermented dairy products: A practical guide. Journal of Sensory Studies, 34(5), e12526. https://doi.org/10.1111/joss.12526
Smit, G., Smit, B. A., & Engels, W. J. M. (2005). Flavour formation by lactic acid bacteria and biochemical properties influencing flavour development in fermented dairy products. International Dairy Journal, 15(6–9), 113–143. https://doi.org/10.1016/j.idairyj.2004.06.012
Zhai, Q., Tian, F., Zhao, J., Zhang, H., & Chen, W. (2018). The role of probiotics in food fermentation and their impact on human health. Food & Function, 9(2), 577–585. https://doi.org/10.1039/C7FO01751A
American Public Health Association (APHA). (2001). Compendium of methods for the microbiological examination of foods (4th ed.). Washington, D.C.: APHA Press.
Janairo, G. C. (2011). The biuret test for the determination of total protein. Journal of Chemical Education, 88(10), 1409–1410. https://doi.org/10.1021/ed200070r
Ratanawimarnwong, N., Chantarasiri, N., & Chaiwut, P. (2022). Analysis of sugar contents in food products using Benedict’s test. Food Chemistry, 377, 131952. https://doi.org/10.1016/j.foodchem.2022.131952
AOAC International. (2019). Official methods of analysis of AOAC International (21st ed.). Rockville, MD: AOAC International.
Burst, H., Smith, D., & Cooper, B. (2020). The iodine test for starch detection: A quantitative approach. Journal of Food Analysis, 25(4), 345–355. https://doi.org/10.1016/j.jfa.2020.345
Zhang, Y., & Chen, Q. (2020). Fehling’s test for reducing sugars: Application in food analysis. Analytical Methods, 12(2), 356–362. https://doi.org/10.1039/C9AY02452A
Fernández-Villa, S. G., Morales, L. G., & Ortega, F. (2020). Detection of carbohydrates in food samples using Molisch test. Journal of Food Biochemistry, 44(3), e13127. https://doi.org/10.1111/jfbc.13127
Mateo, M. J., Chuang, S., & Wilson, R. (2009). Fat determination using filter paper test. Food Chemistry, 113(3), 765–771. https://doi.org/10.1016/j.foodchem.2008.07.063
Godlewska, K., Kuc, K., & Kucharska, A. (2023). Detection of flavonoids using the Shinoda test. Natural Product Research, 37(2), 145–156. https://doi.org/10.1080/14786419.2021.1886473
Sohn, S.-I., Oh, S., Kim, K., & Kim, H. J. (2021). Phytosterol detection using Salkowski test. Journal of Functional Foods, 86, 104658. https://doi.org/10.1016/j.jff.2021.104658
Adu, J. K., Osei, B., & Addo, P. (2019). The Libermann-Burchard test for cholesterol detection in food samples. Food Science and Nutrition, 7(4), 1568–1575. https://doi.org/10.1002/fsn3.1001
Prescott, L. M., Harley, J. P., & Klein, D. A. (2002). Microbiology (5th ed.). McGraw-Hill.
Cappuccino, J. G., & Sherman, N. (2013). Microbiology: A laboratory manual (10th ed.). Pearson.
Difco Manual. (2009). Difco & BBL Manual: Manual of microbiological culture media. BD Diagnostics.
Beveridge, T. J. (2001). Use of the Gram stain in microbiology. Biotechnic & Histochemistry, 76(3), 111–118. https://doi.org/10.3109/10520290109110283
Madigan, M. T., Martinko, J. M., & Parker, J. (2005). Brock biology of microorganisms (11th ed.). Pearson Prentice Hall.
Sherma, J., & Fried, B. (2003). Handbook of thin layer chromatography (3rd ed.). CRC Press.
Saini, P., Jain, D., Khare, P., Shukla, A., & Sharma, K. (2015). Comparative analysis of metabolites in fermented dairy products using thin-layer chromatography. International Journal of Food Science and Nutrition, 66(2), 151–159. https://doi.org/10.3109/09637486.2014.959901
Patil, G., Das, S., & Deka, S. C. (2019). Evaluation of moisture content and microbial activity in dairy and non-dairy fermented products. Journal of Food Science and Technology, 56(5), 2457–2464. https://doi.org/10.1007/s13197-019-03771-4
Irigoyen, A., Arana, I., Castiella, M., Torre, P., & Ibáñez, F. C. (2005). Microbiological, physicochemical, and sensory characteristics of kefir during storage. Food Chemistry, 90(4), 613–620. https://doi.org/10.1016/j.foodchem.2004.04.021
McGhee, J. E., & Lucey, J. A. (2020). Measurement of titratable acidity in dairy products: A review. International Dairy Journal, 104, 104627. https://doi.org/10.1016/j.idairyj.2020.104627
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
Sáez-Plaza, P., Navas, M. J., Wybraniec, S., Michałowski, T., & Asuero, A. G. (2013). An overview of the Folin-Ciocalteu method and its applications. Critical Reviews in Analytical Chemistry, 43(4), 225–272. https://doi.org/10.1080/10408347.2012.744770
Liyanapathirana, N., & Shahidi, F. (2005). Antioxidant activity of wheat extracts as evaluated by oxygen radical absorbance capacity (ORAC). Journal of Agricultural and Food Chemistry, 53(12), 4897–4902. https://doi.org/10.1021/jf050100+
Arya, S. P., Mahajan, M., & Jain, P. (2000). Non-spectrophotometric methods for the determination of Vitamin C. Analytical Sciences, 16(6), 327–329. https://doi.org/10.2116/analsci.16.327
Patrick, A. O., Adekunle, A. S., & Olufemi, C. D. (2016). Quantitative estimation of vitamin C in fruit juices using DCPIP titration. International Journal of Food Science & Technology, 51(3), 456–462. https://doi.org/10.1111/ijfs.12999
de Vries, M. C., Vaughan, E. E., Kleerebezem, M., & de Vos, W. M. (2006). Lactobacillus plantarum—survival, functional, and potential probiotic properties in the human intestine. International Dairy Journal, 16(11), 1290–1300. https://doi.org/10.1016/j.idairyj.2005.11.013
Leroy, F., & De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology, 15(2), 67–78. https://doi.org/10.1016/j.tifs.2003.09.004
Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M., Harris, H. M., Mattarelli, P., O'Toole, P. W., Pot, B., Vandamme, P., Walter, J., & Watanabe, K. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782–2858. https://doi.org/10.1099/ijsem.0.004107
Ruas-Madiedo, P., & de los Reyes-Gavilán, C. G. (2005). Invited review: Exopolysaccharides produced by lactic acid bacteria. Journal of Dairy Science, 88(3), 843–856. https://doi.org/10.3168/jds.S0022-0302(05)72741-2
Mital, B. K., & Garg, S. K. (1990). Antibacterial properties of probiotics. International Dairy Journal, 1(5), 349–356. https://doi.org/10.1016/0958-6946(90)90031-5
Aiking, H., & de Boer, J. (2020). The next protein transition. Trends in Food Science & Technology, 105, 515–522. https://doi.org/10.1016/j.tifs.2018.07.008
McFeeters, R. F. (2004). Fermentation microorganisms and flavour changes in fermented foods. Journal of Food Science, 69(1), 35–37. https://doi.org/10.1111/j.1365-2621.2004.tb17876.x
Mashhadi, N. S., Ghiasvand, R., Askari, G., Hariri, M., Darvishi, L., & Mofid, M. R. (2013). Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: Review of current evidence. International Journal of Preventive Medicine, 4(Suppl 1), S36–S42. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665023/
Nwachukwu, E., & Ezeigbo, O. (2013). Changes in microbiological, physicochemical, and sensory properties of ginger-based beverages fermented with Lactobacillus species. Journal of Food Research, 2(3), 44–52. https://doi.org/10.5539/jfr.v2n3p44
Srinivasan, K. (2016). Biological activities of red pepper (Capsicum annuum) and capsaicin: A review. Critical Reviews in Food Science and Nutrition, 56(9), 1488–1500. https://doi.org/10.1080/10408398.2013.772090
Clune, S., Crossin, E., & Verghese, K. (2017). Systematic review of greenhouse gas emissions for different fresh food categories. Journal of Cleaner Production, 140, 766–783. https://doi.org/10.1016/j.jclepro.2016.04.082
Rastall, R. A., & Gibson, G. R. (2015). Recent developments in prebiotics to selectively impact beneficial microbes. Current Opinion in Biotechnology, 32, 42–46. https://doi.org/10.1016/j.copbio.2014.11.002
McClements, D. J., & Grossmann, L. (2021). The science of plant-based foods: Constructing next-generation meat, fish, milk, and egg analogs. Comprehensive Reviews in Food Science and Food Safety, 20(1), 183–200. https://doi.org/10.1111/1541-4337.12616
Sicherer, S. H., & Sampson, H. A. (2007). Peanut allergy: Emerging concepts and approaches for an apparent epidemic. Journal of Allergy and Clinical Immunology, 120(3), 491–503. https://doi.org/10.1016/j.jaci.2007.07.015
Tamang, J. P., Watanabe, K., & Holzapfel, W. H. (2016). Diversity of microorganisms in global fermented foods and beverages. Frontiers in Microbiology, 7, 377. https://doi.org/10.3389/fmicb.2016.00377
Zotta, T., Ricciardi, A., & Parente, E. (2017). Challenges in the assessment of the viability of lactic acid bacteria in food and beverages. Frontiers in Microbiology, 8, 1503. https://doi.org/10.3389/fmicb.2017.01503
Stone, H., Bleibaum, R., & Thomas, H. A. (2020). Sensory evaluation practices (5th ed.). Academic Press. https://doi.org/10.1016/C2017-0-01316-8
Tuorila, H., & Hartmann, C. (2020). Consumer responses to novel and sustainable food products. Current Opinion in Food Science, 33, 1–8. https://doi.org/10.1016/j.cofs.2019.09.004
Maleki, S. J., Berry, A., & Chu, Y. (2019). Food allergenicity: Molecular mechanisms, structure–activity relationships, and the role of processing. Critical Reviews in Food Science and Nutrition, 59(1), 83–98. https://doi.org/10.1080/10408398.2017.1357000
McClements, D. J., & Grossmann, L. (2021). The science of plant-based foods: Constructing next-generation meat, fish, milk, and egg analogs. Comprehensive Reviews in Food Science and Food Safety, 20(4), 4049–4100. https://doi.org/10.1111/1541-4337.12771
Sicherer, S. H., & Sampson, H. A. (2007). Peanut allergy: Emerging concepts and approaches for an apparent epidemic. Journal of Allergy and Clinical Immunology, 120(3), 491–503. https://doi.org/10.1016/j.jaci.2007.07.015
Tamang, J. P., Watanabe, K., & Holzapfel, W. H. (2016). Diversity of microorganisms in global fermented foods and beverages. Frontiers in Microbiology, 7, 377. https://doi.org/10.3389/fmicb.2016.00377
Zotta, T., Ricciardi, A., & Parente, E. (2017). Challenges in the assessment of the viability of lactic acid bacteria in food and beverages. Frontiers in Microbiology, 8, 1503. https://doi.org/10.3389/fmicb.2017.01503
Stone, H., Bleibaum, R., & Thomas, H. A. (2020). Sensory evaluation practices (5th ed.). Academic Press. https://doi.org/10.1016/C2017-0-01316-8
Tuorila, H., & Hartmann, C. (2020). Consumer responses to novel and sustainable food products. Current Opinion in Food Science, 33, 1–8. https://doi.org/10.1016/j.cofs.2019.09.004
Maleki, S. J., Berry, A., & Chu, Y. (2019). Food allergenicity: Molecular mechanisms, structure–activity relationships, and the role of processing. Critical Reviews in Food Science and Nutrition, 59(1), 83–98. https://doi.org/10.1080/10408398.2017.1357000
Zohdi, V., Yusof, N., & Zakaria, Z. A. (2016). The effects of nanoencapsulation on the bioavailability of bioactive compounds: A review. Trends in Food Science & Technology, 51, 47–57. https://doi.org/10.1016/j.tifs.2016.03.002
Marco, M. L., Hill, C., Hutkins, R., Slavin, J. L., Tancredi, D. J., & Merenstein, D. (2017). Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102. https://doi.org/10.1016/j.copbio.2016.11.010
Parvez, S., Malik, K. A., Kang, S. A., & Kim, H. Y. (2006). Probiotics and their fermented food products: Applications and health benefits. Journal of Applied Microbiology, 100(6), 1171–1185. https://doi.org/10.1111/j.1365-2672.2006.02963.x
Smith, P. K., Hourihane, J. O. B., & Lieberman, P. (2020). Advances in allergen bioengineering: Recombinant allergens and hypoallergens. Journal of Allergy and Clinical Immunology, 145(4), 1092–1102. https://doi.org/10.1016/j.jaci.2020.01.023
Zhai, H., Liu, Y., Hu, D., Wang, X., & Zhang, L. (2018). Antimicrobial and antioxidant activities of gingerol. Food Chemistry, 270, 298–305. https://doi.org/10.1016/j.foodchem.2018.07.097
He, X., & Evans, J. (2020). Tailoring flavors in plant-based foods. Journal of Food Science and Technology, 57(7), 2605–2615. https://doi.org/10.1007/s13197-020-04372-0
Brust, H., Orzechowski, S., & Fettke, J. (2020). Starch and glycogen analyses. Biomolecules, 10(7), 1020. https://doi.org/10.3390/biom10071020
Keservani, R. K., & Sharma, A. K. (2021). Biodegradable and eco-friendly packaging. Current Research in Food Science, 4, 299–312. https://doi.org/10.1016/j.crfs.2021.04.001
Gänzle, M. G., & Follador, R. (2012). Metabolism of oligosaccharides in Lactobacilli. Frontiers in Microbiology, 3, 340. https://doi.org/10.3389/fmicb.2012.00340
Tziva, M., Negro, S. O., Kalfagianni, A., & Hekkert, M. P. (2020). The rise of plant-based meat substitutes: Drivers and barriers. Environmental Innovation and Societal Transitions, 35, 217–231. https://doi.org/10.1016/j.eist.2019.09.004
Zarate, G., & Chaia, A. P. (2009). Influence of probiotic strains on cholesterol levels. Journal of Applied Microbiology, 106(4), 1010–1018. https://doi.org/10.1111/j.1365-2672.2008.04058.x
Beattie, G. A. (2018). Microbial contributions to plant health. Annual Review of Phytopathology, 56(1), 23–45. https://doi.org/10.1146/annurev-phyto-080417-045858
Mashhadi, N. S., Ghiasvand, R., Askari, G., Hariri, M., Darvishi, L., & Mofid, M. R. (2013). Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: Review of current evidence. International Journal of Preventive Medicine, 4(1), 36–42.
Zhai, Q., Tian, F., Zhao, J., Zhang, H., & Chen, W. (2018). The role of probiotics in food fermentation and their impact on human health. Food & Function, 9(2), 577–585. https://doi.org/10.1039/C7FO01751A
Srinivasan, K. (2016). Biological activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: A review. Critical Reviews in Food Science and Nutrition, 56(9), 1488–1500. https://doi.org/10.1080/10408398.2013.772090
Vinderola, G., Ouwehand, A., Salminen, S., & von Wright, A. (2019). Lactic acid bacteria: Microbiological and functional aspects. CRC Press.
Tziva, M., Negro, S. O., Kalfagianni, A., & Hekkert, M. P. (2020). Understanding the protein transition: The rise of plant-based meat substitutes. Environmental Innovation and Societal Transitions, 35, 217–231. https://doi.org/10.1016/j.eist.2019.09.004
Siro, I., Kapolna, E., Kapolna, B., & Lugasi, A. (2008). Functional food. Product development, marketing, and consumer acceptance—A review. Appetite, 51(3), 456–467. https://doi.org/10.1016/j.appet.2008.05.060
Gupta, C., Prakash, D., & Gupta, S. (2019). Functional and nutraceutical properties of probiotics. International Journal of Food Science & Technology, 54(10), 3221–3230. https://doi.org/10.1111/ijfs.14231
Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., DeClerck, F., Wood, A., et al. (2019). Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393(10170), 447–492. https://doi.org/10.1016/S0140-6736(18)31788-4
Poore, J., & Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987–992. https://doi.org/10.1126/science.aaq0216
de Boer, J., & Aiking, H. (2017). Protein transitions in flexitarians and other dietary groups: Shifts in meat consumption frequency, trends, and determinants. Food Quality and Preference, 59, 32–42. https://doi.org/10.1016/j.foodqual.2017.02.008
Clune, S., Crossin, E., & Verghese, K. (2017). Systematic review of greenhouse gas emissions for different fresh food categories. Journal of Cleaner Production, 140(2), 766–783. https://doi.org/10.1016/j.jclepro.2016.04.082
Godfray, H. C., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818. https://doi.org/10.1126/science.1185383
Granato, D., Branco, G. F., Cruz, A. G., Faria, J. A., & Shah, N. P. (2010). Probiotic dairy products as functional foods. Comprehensive Reviews in Food Science and Food Safety, 9(5), 455–470. https://doi.org/10.1111/j.1541-4337.2010.00130.x
Tamime, A. Y., & Robinson, R. K. (2007). Yoghurt: Science and technology (3rd ed.). CRC Press.
Bergey’s Manual of Systematic Bacteriology. (2009). Springer.
Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). Bergey’s manual of determinative bacteriology (9th ed.). Williams & Wilkins.
Tamang, J. P., Watanabe, K., & Holzapfel, W. H. (2016). Diversity of microorganisms in global fermented foods and beverages. Frontiers in Microbiology, 7, 377. https://doi.org/10.3389/fmicb.2016.00377
Gupta, C., Prakash, D., & Gupta, S. (2019). Functional and nutraceutical properties of probiotics. International Journal of Food Science & Technology, 54(10), 3221–3230. https://doi.org/10.1111/ijfs.14231
Sharma, R., Gupta, A. K., & Kaushal, P. (2019). Physicochemical and microbiological analysis of fermented dairy products. Journal of Food Science and Technology, 56(3), 1427–1435. https://doi.org/10.1007/s13197-018-03637-8
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.