Study of the Quantum Dot and Theoretical Model of Hamiltonian of An Electron Interaction with Longitudinal Optical Phonons
DOI:
https://doi.org/10.32628/IJSRST251222811Keywords:
Electron, Phonon Interaction, FTL, Momentum, Quantum DotAbstract
In this present paper, we presented about the study of the quantum dot and present a theoretical model of Hamiltonian of an electron interaction with longitudinal optical phonons.
Downloads
References
M. B ttiker, Y. Imry and R. Landauer, Phys. Lett. A 96, 365 (1983). DOI: https://doi.org/10.1016/0375-9601(83)90011-7
H. F. Cheung, Y. Gefen, E. K. Riedel and W.-H. Shih, Phys. Rev. B 37, 6050 (1988). DOI: https://doi.org/10.1103/PhysRevB.37.6050
B. L. Altshuler, Y. Gefen and Y. Imry, Phys. Rev. Lett. 66, 88 (1991); DOI: https://doi.org/10.1103/PhysRevLett.66.88
F. von Oppen and E. K. Riedel, Phys. Rev. Lett. 66, 84 (1991); DOI: https://doi.org/10.1103/PhysRevLett.66.84
M. Abraham and R. Berkovits, Phys. Rev. Lett. 70, 1509 (1993); DOI: https://doi.org/10.1103/PhysRevLett.70.1509
T. Giamarchi and B. S Shastry, Phys. Rev. B 5, 10915 (1995); DOI: https://doi.org/10.1103/PhysRevB.51.10915
L. K. Castelano, G. Q Hai, B. Partoens and F. M. Peeters, Phys. Rev. B 78, 195315 (2008). DOI: https://doi.org/10.1103/PhysRevB.78.195315
V. Chadrasekhar et al., Phys. Rev. Lett 67, 3578 (1991). DOI: https://doi.org/10.1103/PhysRevLett.67.3578
D. Mailly, C. Chapelier and A. Benoit, Phys. Rev. Lett. 70, 2020 (1993); DOI: https://doi.org/10.1103/PhysRevLett.70.2020
E. M. Q. Jariwala, P. Mohanty, M. B. Ketchen, R. A. Webb, Phys. Rev. Lett. 86, 1594 (2001); DOI: https://doi.org/10.1103/PhysRevLett.86.1594
R. Deblock, R. Bel, B. Reulet, H. Bouchiat and D. Mailly, Phys. Rev. Lett. 89, 206803 (2002). DOI: https://doi.org/10.1103/PhysRevLett.89.206803
S. Viefers, P. Koskinen, P. Singha Deo and M. Manninen, Physica E 21, 1-35 (2004). DOI: https://doi.org/10.1016/j.physe.2003.08.076
S. Gupta, S. Sil and B. Bhattacharyya, Phys. Lett. A 324, 494 (2004); DOI: https://doi.org/10.1016/j.physleta.2004.03.010
S. K. Maiti, J. Chowdhury and S. N. Karmakar, Phys. Lett. A 332, 497 (2004); DOI: https://doi.org/10.1016/j.physleta.2004.10.015
B. B. Wei, S.-J. Gu and H.-Q. Lin, J. Phys.: Condens. Matter 20, 395209 (2008); DOI: https://doi.org/10.1088/0953-8984/20/39/395209
S. K. Maiti, Solid State Commun. 150, 2212 (2010). DOI: https://doi.org/10.1016/j.ssc.2010.09.041
Y. Takada and A. Chatterjee, Phys. Rev. B 67, 081102 (R) (2003). DOI: https://doi.org/10.1103/PhysRevB.67.081102
T. Koga, J. Nitta, T. Akazaki and H. Takayanagi, Phys. Rev. Lett. 89, 046801 (2002); DOI: https://doi.org/10.1103/PhysRevLett.89.046801
J. Premper, M. Trautmann, J. Henk and P. Bruno, Phys. Rev. B 76, 073310 (2007); DOI: https://doi.org/10.1103/PhysRevB.76.073310
S. Sil, S. K. Maiti and A. Chakrabarti, J. Appl. Phys. 112, 024321 (2012); DOI: https://doi.org/10.1063/1.4739485
S. K. Maiti, Moumita Dey, S. Sil, A. Chakrabarti and S. N. Karmakar, Europhys. Lett. 95, 57008 (2011). DOI: https://doi.org/10.1209/0295-5075/95/57008
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0