Bee Venom as a Therapeutic Agent: Effects on Pneumonia and UTI-Causing Bacteria

Authors

  • Monika Research Intern, Rapture Biotech Pvt. Ltd, Mohali, Punjab, India Author
  • Dr. Puneet Senior Scientist, Rapture Biotech Pvt. Ltd, Mohali, Punjab, India Author
  • Gurinder Singh Research Associate, Rapture Biotech Pvt. Ltd, Mohali, Punjab, India Author
  • Harpreet Kaur Centre Director, Rapture Biotech Pvt. Ltd, Mohali, Punjab, India Author

DOI:

https://doi.org/10.32628/IJSRST2512395

Keywords:

Antibacterial activity, antibiotic resistance, apitherapy, therapeutic agents, disc diffusion, serial dilution

Abstract

The aim of this study was to evaluate the antibacterial activity of bee venom as a potential alternative to antibiotics, particularly for treating pneumonia and urinary tract infections (UTIs) caused by antibiotic-resistant and multidrug-resistant bacteria. UTIs can occasionally be caused by some of the same bacteria that usually cause pneumonia, including Klebsiella pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa. On the other hand, pneumonia can sometimes result from bacteria such as Serratia rubidaea and Proteus mirabilis, which are mainly responsible for UTIs. Using disk diffusion and minimum inhibitory concentration (MIC) demonstrations, the antibacterial effectiveness of bee venom was assessed for different bacterial strains of pneumonia such as Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa and Micrococcus luteus as well as UTI causing strains like Serratia rubidaea, Proteus mirabilis and Staphylococcus saprophyticus. According to the results, bee venom significantly inhibited the growth of these infections. This study examines how well bee venom (BV), a natural substance with a complex mix of bioactive chemicals, inhibits the growth of bacteria that cause pneumonia and UTIs. Bee venom's active ingredients, including melittin, phospholipase A2, and apamin, have been found to have possible roles in its antibacterial properties. The necessity for innovative therapeutic approaches is highlighted by the difficulties faced by traditional antibiotic therapies as a result of growing antimicrobial resistance and MDR. This study emphasizes how bee venom may be used as a substitute treatment for bacteria that cause pneumonia and UTIs.

Downloads

Download data is not yet available.

References

Huoi, C., Vanhems, P., Nicolle, M., Michallet, M., & Bénet, T. (2013). Incidence of Hospital-Acquired Pneumonia, Bacteraemia and Urinary Tract Infections in Patients with Haematological Malignancies, 2004–2010: A Surveillance-Based Study. PLoS ONE, 8. https://doi.org/10.1371/journal.pone.0058121.

Quinton, L., Walkey, A., & Mizgerd, J. (2018). Integrative Physiology of Pneumonia. Physiological reviews, 98 3, 1417-1464 . https://doi.org/10.1152/physrev.00032.2017.

Ayuk, A. (2024). Complications and long-term impact of early life pneumonia.. Pediatric pulmonology. https://doi.org/10.1002/ppul.27299.

Reynolds, J., Mcdonald, G., Alton, H., & Gordon, S. (2010). Pneumonia in the immunocompetent patient.. The British journal of radiology, 83 996, 998-1009. https://doi.org/10.1259/bjr/31200593

Algaows, F., Alamer, B., Alotaibi, M., Aljubran, Z., Alshammary, B., Alfaifi, N., Aldawsari, N., Alanazi, A., Alwadai, A., Alayyafi, A., & Mohammad, A. (2021). Lower Respiratory Tract Infections in Primary Care, Review Article. Journal of Pharmaceutical Research International. https://doi.org/10.9734/jpri/2021/v33i58a34133.

Biščević-Tokić, J., Tokić, N., & Musanović, A. (2013). Pneumonia as the Most Common Lower Respiratory Tract Infection. Medical Archives, 67, 442 - 445. https://doi.org/10.5455/medarh.2013.67.442-445.

Torres, A., Cillóniz, C., Niederman, M., Menéndez, R., Chalmers, J., Wunderink, R., & Van Der Poll, T. (2021). Pneumonia. Nature Reviews Disease Primers, 7, 1. https://doi.org/10.1038/s41572-021-00259-0.

Reiss, A., & McKiernan, B. (2020). Pneumonia. Pediatric Practice Guidelines. https://doi.org/10.32388/a46alq.

Singh, Peetam; Pandey, Anita. Community-acquired lower respiratory tract infection due to Serratia rubidaea: A rare and opportunistic pathogen. MRIMS Journal of Health Sciences 13(1):p 35-38, Jan–Mar 2025. | DOI: 10.4103/mjhs.mjhs_61_24

Lin, C., Ye, B., Ping, C., & Li, L. (2023). Pneumonia Review based on Pathogenic Factors. Current Traditional Medicine. https://doi.org/10.2174/0122150838255055230919074231

Foxman, B. (2010). The epidemiology of urinary tract infection. Nature Reviews Urology, 7, 653-660. https://doi.org/10.1038/nrurol.2010.190.

Klein, R., & Hultgren, S. (2020). Urinary tract infections: microbial pathogenesis, host–pathogen interactions and new treatment strategies. Nature Reviews Microbiology, 18, 211-226. https://doi.org/10.1038/s41579-020-0324-0

Mancuso, G., Midiri, A., Gerace, E., Marra, M., Zummo, S., & Biondo, C. (2023). Urinary Tract Infections: The Current Scenario and Future Prospects. Pathogens, 12. https://doi.org/10.3390/pathogens12040623.

Mancuso, G., Trinchera, M., Midiri, A., Zummo, S., Vitale, G., & Biondo, C. (2024). Novel Antimicrobial Approaches to Combat Bacterial Biofilms Associated with Urinary Tract Infections. Antibiotics, 13. https://doi.org/10.3390/antibiotics13020154.

Daniel, M., Szymanik-Grzelak, H., Sierdziński, J., Podsiadły, E., Kowalewska-Młot, M., & Pańczyk-Tomaszewska, M. (2023). Epidemiology and Risk Factors of UTIs in Children—A Single-Center Observation. Journal of Personalized Medicine, 13. https://doi.org/10.3390/jpm13010138.

Ishak, A., Alhadi, A., Al-Moyed, K., & Al-Shamahy, H. (2021). CHILDHOOD URINARY TRACT INFECTION: CLINICAL SIGNS, BACTERIAL CAUSES AND ANTIBIOTIC SUSCEPTIBILITY. Universal Journal of Pharmaceutical Research. https://doi.org/10.22270/ujpr.v6i4.643.

Geerlings, S. (2016). Clinical Presentations and Epidemiology of Urinary Tract Infections. Microbiology Spectrum, 4. https://doi.org/10.1128/microbiolspec.uti-0002-2012.

Wagenlehner, F., & Naber, K. (2006). Treatment of bacterial urinary tract infections: presence and future.. European urology, 49 2, 235-44. https://doi.org/10.1016/J.EURURO.2005.12.017.

Bhargava, K., Nath, G., Bhargava, A., Kumari, R., Aseri, G., & Jain, N. (2022). Bacterial profile and antibiotic susceptibility pattern of uropathogens causing urinary tract infection in the eastern part of Northern India. Frontiers in Microbiology,13. https://doi.org/10.3389/fmicb.2022.965053.

Shahrani, G., & Belali, T. (2024). Frequency of drug-resistant bacterial isolates among pregnant women with UTI in maternity and children’s hospital, Bisha, Saudi Arabia. Scientific Reports, 14. https://doi.org/10.1038/s41598-024-58275-5.

Öztürk, R., & Murt, A. (2020). Epidemiology of urological infections: a global burden. World Journal of Urology, 1-11. https://doi.org/10.1007/s00345-019-03071-4.

Fibke, C., Croxen, M., Geum, H., Glass, M., Wong, E., Avery, B., Daignault, D., Mulvey, M., Reid-Smith, R., Parmley, E., Portt, A., Boerlin, P., & Manges, A. (2019). Genomic Epidemiology of Major Extraintestinal Pathogenic Escherichia coli Lineages Causing Urinary Tract Infections in Young Women Across Canada. Open Forum Infectious Diseases, 6. https://doi.org/10.1093/ofid/ofz431.

Mayr, Florian B., Sachin Yende, and Derek C. Angus. "Epidemiology of severe sepsis." Virulence 5.1 (2014): 4-11.

Smelaya, T., Belopolskaya, O., Smirnova, S. et al. Genetic dissection of host immune response in pneumonia development and progression. Sci Rep 6, 35021 (2016). https://doi.org/10.1038/srep35021

Flores-Mireles, A., Walker, J., Caparon, M., & Hultgren, S. (2015). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology, 13, 269-284. https://doi.org/10.1038/nrmicro3432.

Islam, M., Islam, M., Khan, R., Amin, M., Rahman, M., Hossain, M., Ahmed, D., Asaduzzaman, M., & Riley, L. (2022). Prevalence, etiology and antibiotic resistance patterns of community-acquired urinary tract infections in Dhaka, Bangladesh. PLoS ONE, 17. https://doi.org/10.1371/journal.pone.0274423.

Lanks CW, Musani AI, Hsia DW. Community-acquired Pneumonia and Hospital-acquired Pneumonia. Med Clin North Am. 2019 May;103(3):487-501. doi:10.1016/j.mcna.2018.12.008. Epub 2019 Mar 7. PMID: 30955516.

Kim, G., Seon, S., & Rhee, D. (2017). Pneumonia and Streptococcus pneumoniae vaccine. Archives of Pharmacal Research, 40, 885 - 893. https://doi.org/10.1007/s12272-017-0933-y.

Musher, D., Abers, M., & Bartlett, J. (2017). Evolving Understanding of the Causes of Pneumonia in Adults, With Special Attention to the Role of Pneumococcus. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 65, 1736 - 1744. https://doi.org/10.1093/cid/cix549.

Dandachi, D., & Rodriguez‐Barradas, M. (2018). Viral pneumonia: etiologies and treatment. Journal of Investigative Medicine, 66, 957 - 965. https://doi.org/10.1136/jim-2018-000712.

Ruuskanen, O., Lahti, E., Jennings, L., & Murdoch, D. (2011). Viral pneumonia. Lancet (London, England), 377, 1264 - 1275. https://doi.org/10.1016/S0140-6736(10)61459-6.

Dueck, N., Epstein, S., Franquet, T., Moore, C., & Bueno, J. (2021). Atypical Pneumonia: Definition, Causes, and Imaging Features. Radiographics : a review publication of the Radiological Society of North America, Inc, 200131 . https://doi.org/10.1148/rg.2021200131.

Zhou, Y., Zhou, Z., Zheng, L., Gong, Z., Li, Y., Jin, Y., Huang, Y., & Chi, M. (2023). Urinary Tract Infections Caused by Uropathogenic Escherichia coli: Mechanisms of Infection and Treatment Options. International Journal of Molecular Sciences, 24. https://doi.org/10.3390/ijms241310537.

Gerdes, E., Wynd, M., & Chaung, M. (2025). P-2259. Incidence, Treatment, and Outcomes of Urinary Tract Infections Caused by Extended-Spectrum Beta-Lactamase Producing Bacteria in Kidney Transplant Recipients. Open Forum Infectious Diseases, 12. https://doi.org/10.1093/ofid/ofae631.2412.

Bader, M., Loeb, M., & Brooks, A. (2017). An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgraduate Medicine, 129, 242 - 258. https://doi.org/10.1080/00325481.2017.1246055.

Wilson, M., & Gaido, L. (2004). Laboratory diagnosis of urinary tract infections in adult patients.. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 38 8, 1150-8 . https://doi.org/10.1086/383029.

Kline, K., & Lewis, A. (2016). Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract. Microbiology Spectrum, 4. https://doi.org/10.1128/microbiolspec.uti-0012-2012.

Caneiras, C., Lito, L., Melo-Cristino, J., & Duarte, A. (2019). Community- and Hospital-Acquired Klebsiella pneumoniae Urinary Tract Infections in Portugal: Virulence and Antibiotic Resistance. Microorganisms, 7. https://doi.org/10.3390/microorganisms7050138.

Husseini, N., Carter, J., & Lee, V. (2024). Urinary tract infections and catheter-associated urinary tract infections caused by Pseudomonas aeruginosa.. Microbiology and molecular biology reviews: MMBR, e0006622. https://doi.org/10.1128/mmbr.00066-22.

Xu, K., Wang, Y., Jian, Y., Chen, T., Liu, Q., Wang, H., Li, M., & He, L. (2023). Staphylococcus aureus ST1 promotes persistent urinary tract infection by highly expressing the urease. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1101754.

Berger, J., Pogosian, N., & Zainah, H. (2022). Egads It’s Enterobacteriaceae: Serratia rubidaea Urinary Tract Infection & Enterobacter aerogenes Bacteremic Urinary Tract Infection. Open Journal of Nephrology. https://doi.org/10.4236/ojneph.2022.121012.

Kumar, S., Bandyopadhyay, M., Chatterjee, M., Mukhopadhyay, P., Pal, S., Poddar, S., & Banerjee, P. (2013). Red discoloration of urine caused by Serratia rubidae: A rare case. Avicenna Journal of Medicine, 3, 20 - 22. https://doi.org/10.4103/2231-0770.112790.

Palusiak, A. (2022). Proteus mirabilis and Klebsiella pneumoniae as pathogens capable of causing co-infections and exhibiting similarities in their virulence factors. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.991657.

Okimoto, N., Hayashi, T., Ishiga, M., Nanba, F., Kishimoto, M., Yagi, S., Kurihara, T., Asaoka, N., & Tamada, S. (2010). Clinical features of Proteus mirabilis pneumonia. Journal of Infection and Chemotherapy, 16, 364-366. https://doi.org/10.1007/s10156-010-0059-3.

Segura, M., Ferraris, M., Robledo, N., Toledo, I., & Balestracci, A. (2024). [Urinary tract infection due to Streptococcus pneumoniae and its relationship with nephrourological malformations].. Andes pediatrica : revista Chilena de pediatria, 95 4, 430-435 . https://doi.org/10.32641/andespediatr.v95i4.4993.

Chapelle, C., Gaborit, B., Dumont, R., Dinh, A., & Vallée, M. (2021). Treatment of UTIs Due to Klebsiella pneumoniae Carbapenemase-Producers: How to Use New Antibiotic Drugs? A Narrative Review. Antibiotics, 10. https://doi.org/10.3390/antibiotics10111332.

Pruss, A., Kwiatkowski, P., Sienkiewicz, M., Masiuk, H., Łapińska, A., Kot, B., Kilczewska, Z., Giedrys-Kalemba, S., & Dołęgowska, B. (2023). Similarity Analysis of Klebsiella pneumoniae Producing Carbapenemases Isolated from UTI and Other Infections. Antibiotics, 12. https://doi.org/10.3390/antibiotics12071224.

Decano, A., Pettigrew, K., Sabiiti, W., Sloan, D., Neema, S., Bazira, J., Kiiru, J., Onyango, H., Asiimwe, B., & Holden, M. (2021). Pan-Resistome Characterization of Uropathogenic Escherichia coli and Klebsiella pneumoniae Strains Circulating in Uganda and Kenya, Isolated from 2017–2018. Antibiotics, 10. https://doi.org/10.3390/antibiotics10121547.

Cipriani, C., Carilli, M., Rizzo, M., Miele, M., Sinibaldi‐Vallebona, P., Matteucci, C., Bove, P., & Balestrieri, E. (2025). Bioactive Compounds as Alternative Approaches for Preventing Urinary Tract Infections in the Era of Antibiotic Resistance. Antibiotics, 14. https://doi.org/10.3390/antibiotics14020144.

Gao, Y., Shang, Q., Li, W., Guo, W., Stojadinovic, A., Mannion, C., Man, Y., & Chen, T. (2020). Antibiotics for cancer treatment: A double-edged sword. Journal of Cancer, 11, 5135 - 5149. https://doi.org/10.7150/jca.47470.

Iocca, O., Copelli, C., Ramieri, G., Zocchi, J., Savo, M., & Di Maio, P. (2021). Antibiotic prophylaxis in head and neck cancer surgery: Systematic review and Bayesian network meta‐analysis. Head & Neck, 44, 254 261. https://doi.org/10.1002/hed.26908.

Gallagher, M., Jones, D., & Bell-Syer, S. (2019). Prophylactic antibiotics to prevent surgical site infection after breast cancer surgery. The Cochrane database of systematic reviews, 9, CD005360. https://doi.org/10.1002/14651858.CD005360.pub5.

Munita, J., & Arias, C. (2016). Mechanisms of Antibiotic Resistance. Microbiology Spectrum, 4. https://doi.org/10.1128/microbiolspec.vmbf-0016-2015.

Friedman, N., Temkin, E., & Carmeli, Y. (2016). The negative impact of antibiotic resistance.. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 22 5, 416-22 . https://doi.org/10.1016/j.cmi.2015.12.002.

Tillotson, G., & Zinner, S. (2017). Burden of antimicrobial resistance in an era of decreasing susceptibility. Expert Review of Anti-infective Therapy, 15, 663 - 676. https://doi.org/10.1080/14787210.2017.1337508.

Huemer, M., Shambat, S., Brugger, S., & Zinkernagel, A. (2020). Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO reports, 21. https://doi.org/10.15252/embr.202051034.

MacLean, R., & Millán, S. (2019). The evolution of antibiotic resistance. Science, 365, 1082 1083. https://doi.org/10.1126/science.aax3879.

CDC, 2013. Antibiotic resistance threats in the United States. Atlanta, GA: US Department of Health and Human Services.

Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K. M., Wertheim, H. F. L., Sumpradit, N., Vlieghe, E., Hara, G. L., Gould, I. M., Goossens, H., Greko, C., So, A. D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A. Q., Qamar, F. N., Mir, F., ... Cars, O. (2013). Antibiotic resistance: the need for global solutions. Lancet Infectious Diseases, 13(12), 1057-1098. https://doi.org/10.1016/S1473-3099(13)70318-9

Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 2018, 42, 68–80. [CrossRef] [PubMed]

Urban-Chmiel R, Marek A, Stępień-Pyśniak D, Wieczorek K, Dec M, Nowaczek A, Osek J. Antibiotic Resistance in Bacteria-A Review. Antibiotics (Basel). 2022 Aug 9;11(8):1079. doi: 10.3390/antibiotics11081079. PMID: 36009947; PMCID: PMC9404765.

Giedraitien˙ e, A.; Vitkauskien˙ e, A.; Naginien˙ e, R.; Pavilonis, A. Antibiotic resistance mechanisms of clinically important bacteria. Medicina 2011, 47, 137–146. [CrossRef]

van Hoek, A.H.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J. Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2011, 2, 203. [CrossRef]

Alekshun, M., & Levy, S. (2007). Molecular Mechanisms of Antibacterial Multidrug Resistance. Cell, 128, 1037-1050. https://doi.org/10.1016/j.cell.2007.03.004

Nikaido, H. (2009). Multidrug resistance in bacteria.. Annual review of biochemistry, 78, 119-46 https://doi.org/10.1146/annurev.biochem.78.082907.145923.

Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence. 2011 Sep-Oct;2(5):445-59. doi: 10.4161/viru.2.5.17724. Epub 2011 Sep 1. PMID: 21921685; PMCID: PMC3322633.

Kiedrowski MR, Horswill AR. New approaches for treating staphylococcal biofilm infections. Ann N Y Acad Sci. 2011 Dec;1241:104-21. doi: 10.1111/j.1749-6632.2011.06281.x. PMID: 22191529.

Lister JL, Horswill AR. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol. 2014 Dec 23;4:178. doi: 10.3389/fcimb.2014.00178. PMID: 25566513; PMCID: PMC4275032.

Martins, A., Judák, F., Farkas, Z., Szili, P., Grézal, G., Csörgő, B., Czikkely, M., Maharramov, E., Daruka, L., Spohn, R., Balogh, D., Daraba, A., Juhász, S., Vágvölgyi, M., Hunyadi, A., Cao, Y., Sun, Z., Li, X., Papp, B., & Pál, C. (2025). Antibiotic candidates for Gram-positive bacterial infections induce multidrug resistance.. Science translational medicine, 17 780,eadl2103. https://doi.org/10.1126/scitranslmed.adl2103.

Terreni, M., Taccani, M., & Pregnolato, M. (2021). New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules, 26. https://doi.org/10.3390/molecules26092671.

Macesic, N., Uhlemann, A., & Peleg, A. (2025). Multidrug-resistant Gram-negative bacterial infections. The Lancet, 405, 257-272. https://doi.org/10.1016/S0140-6736(24)02081-6.

Robert C. Hider, Honeybee venom: A rich source of pharmacologically active peptides, Endeavour, Volume 12, Issue 2, 1988, Pages 60-65, ISSN 0160-9327, https://doi.org/10.1016/0160-9327(88)90082-8.

Ahmed O, Fahim H, Mahmoud A, Eman Ahmed EA. Bee Venom and Hesperidin Effectively Mitigate Complete Freund's Adjuvant-Induced Arthritis Via Immunomodulation and Enhancement of Antioxidant Defense System. Arch Rheumatol. 2017 Nov 2;33(2):198-212. doi: 10.5606/ArchRheumatol.2018.6519. PMID: 30207564; PMCID: PMC6117137.

Zhang S, Liu Y, Ye Y, Wang XR, Lin LT, Xiao LY, Zhou P, Shi GX, Liu CZ. Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon. 2018 Jun 15;148:64-73. doi: 10.1016/j.toxicon.2018.04.012. Epub 2018 Apr 11. PMID: 29654868.

Wehbe R, Frangieh J, Rima M, El Obeid D, Sabatier JM, Fajloun Z. Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests. Molecules. 2019 Aug 19;24(16):2997. doi: 10.3390/molecules24162997. PMID: 31430861; PMCID: PMC6720840.

Carpena M, Nuñez-Estevez B, Soria-Lopez A, Simal-Gandara J. Bee Venom: An Updating Review of Its Bioactive Molecules and Its Health Applications. Nutrients. 2020 Oct 31;12(11):3360. doi: 10.3390/nu12113360. PMID: 33142794; PMCID: PMC7693387.

Khalil A, Elesawy BH, Ali TM, Ahmed OM. Bee Venom: From Venom to Drug. Molecules. 2021 Aug 15;26(16):4941. doi: 10.3390/molecules26164941. PMID: 34443529; PMCID: PMC8400317.

El-Seedi, H., El-Wahed, A., Yosri, N., Musharraf, S., Chen, L., Moustafa, M., Zou, X., Al-Mousawi, S., Guo, Z., Khatib, A., & Khalifa, S. (2020). Antimicrobial Properties of Apis mellifera’s Bee Venom. Toxins, 12. https://doi.org/10.3390/toxins12070451.

Isidorov, V., Zalewski, A., Zambrowski, G., & Święcicka, I. (2023). Chemical Composition and Antimicrobial Properties of Honey Bee Venom. Molecules, 28. https://doi.org/10.3390/molecules28104135.

Tanuwidjaja, I., Svečnjak, L., Gugić, D., Levanić, M., Jurić, S., Vinceković, M., & Fuka, M. (2021). Chemical Profiling and Antimicrobial Properties of Honey Bee (Apis mellifera L.) Venom. Molecules, 26. https://doi.org/10.3390/molecules26103049.

Maitip, J., Mookhploy, W., Khorndork, S., & Chantawannakul, P. (2021). Comparative Study of Antimicrobial Properties of Bee Venom Extracts and Melittins of Honey Bees. Antibiotics, 10. https://doi.org/10.3390/antibiotics10121503.

Ko, S., Park, E., Asandei, A., Choi, J., Lee, S., Seo, C., Luchian, T., & Park, Y. (2020). Bee venom-derived antimicrobial peptide melectin has broad-spectrum potency, cell selectivity, and salt-resistant properties. Scientific Reports, 10. https://doi.org/10.1038/s41598-020-66995-7.

Awad, E., Arafa, W., Ali, H., Barakat, O., & Ahmed, M. (2025). Unveiling the Anti-Biofilm Potential of Bee Venom Against Multi-Drug Resistant Human Pathogenic Bacteria and Fungi: Perspectives into the Efficacy and Possible Mechanisms.. Microbial pathogenesis, 107358 . https://doi.org/10.1016/j.micpath.2025.107358.

Su, Su Swe, Khine Zar Wynn Lae, and Hla Ngwe. "Isolation and Identification of Pseudomonas aeruginosa from the Clinical Soil." University of Yangon Research Journal 8 (2018): 271-275.

Sham Shihabudeen, M. H., Priscilla, H. D., & Thirumurugan, K. (2010). Antimicrobial activity and phytochemical analysis of selected Indian folk medicinal plants. In International Journal of Pharma Sciences and Research (IJPSR) (Vol. 1, Issue 10).

Radji, M., Agustama, R. A., Elya, B., & Tjampakasari, C. R. (2013). Antimicrobial activity of green tea extract against isolates of methicillin-resistant Staphylococcus aureus and multi-drug resistant Pseudomonas aeruginosa. Asian Pacific Journal of Tropical Biomedicine, 3(8), 663–667. https://doi.org/10.1016/S2221-1691(13)60133-1

Balali, G. I., Yar, D. D., & Sylverken, A. A. (2023). Antimicrobial activities of Hibiscus sabdariffa and Aspilia africana against clinical isolates of Salmonella typhi. Scientific African, 20. https://doi.org/10.1016/j.sciaf.2023.e01667

Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Mitic Culafic, D.; Trudic, A.; Ranin, L.; Opavski, N. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics 2022, 11, 427. https://doi.org/10.3390/antibiotics11040427

Hikaambo, C. N., Kaacha, L., Mudenda, S., Nyambe, M. N., Chabalenge, B., Phiri, M., Biete, L. L., Akapelwa, T. M., Mufwambi, W., Chulu, M., & Kampamba, M. (2022). Phytochemical Analysis and Antibacterial Activity of <i>Azadirachta indica</i> Leaf Extracts against <i>Escherichia coli</i> Pharmacology & Pharmacy, 13(01), 1–10. https://doi.org/10.4236/pp.2022.131001

Kong, R., Lee, YS., Kang, DH. et al. The antibacterial activity and toxin production control of bee venom in mouse MRSA pneumonia model. BMC Complement Med Ther 20, 238 (2020). https://doi.org/10.1186/s12906-020-02991-8

Sofy, A. R., Sofy, M. R., El-Dougdoug, K. A., Zahra, A. A., Fadl, A. E.-W. I., & Ahmed A. Hmed. (2018). ANTIBACTERIAL AND ANTIBIOFILM EFFECTS OF BEE VENOM FROM (APIS MELLIFERA) ON MULTIDRUG-RESISTANT BACTERIA (MDRB). In Az. J. Pharm Sci. (Vol. 58, pp. 60–62). https://ajps.journals.ekb.eg/article_46641_3eb2c3dd711ff634f99aaf65c0815f8a.pdf

Downloads

Published

26-05-2025

Issue

Section

Research Articles