Synthesis of bis(indolyl)methanes Using Environmentally Favorable Cellulose Supported Sulfanilic Acid Catalyst
DOI:
https://doi.org/10.32628/IJSRST251281Keywords:
bis(indolyl)methanes, biologically active, cellulose, sulphanilic acidAbstract
Cellulose sulfanilic acid is a highly regarded catalyst for producing bis(indolyl)methanes. In this process, a substituted benzaldehyde interacts with two indole molecules to form a biologically active bis(indolyl)methane compound. The reaction is rapid and utilizes a readily available, cost-effective, environmentally friendly, solvent-free, and green catalyst. This catalyst facilitates the activation of the carbonyl group in the aldehyde, which then reacts with the third position of the indole molecule.
Downloads
References
F. Dumeignil, J.-F. Paul, S. Paul, Heterogeneous catalysis with renewed attention: Principles, theories, and concepts, J. Chem. Educ. 94 (2017) 675–689. DOI: https://doi.org/10.1021/acs.jchemed.6b00611
J. Godse, N. Shukla, M. Hait, Advances In Heterocyclic Chemistry, 2024.
W. Xie, J. Li, Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review, Renew. Sustain. Energy Rev. 171 (2023) 113017. DOI: https://doi.org/10.1016/j.rser.2022.113017
X. Shen, J. Zheng, L. Hu, Q. Gu, J. Li, K. Chen, Y. Jiang, X. Wang, Z. Wu, J. Song, Highly effective synthesis of biomass-derived furanic diethers over a sulfonated zirconium–carbon coordination catalyst in alcohol systems, Green Chem. 25 (2023) 4090–4103. DOI: https://doi.org/10.1039/D3GC00479A
Q. Li, R. Gao, Y. Zhang, Y. Zhang, T. Liu, Y.-C. He, M.-M. Zheng, Enhanced upgrading of corncob to furfuryl alcohol with a novel silica-supported SO 4 2−-TiO 2 chemocatalyst and immobilized whole-cell biocatalyst, Green Chem. 25 (2023) 7764–7773. DOI: https://doi.org/10.1039/D3GC01764H
S.B. Gaikwad, S.B. Borul, S.R. Bembalkar, Synthesis of Bis 1h-Indole Methane Derivatives Using Cellulose Perchloric Acid Under Solvent-Free Conditions, Int. J. Chem. Phys. Sci. 4 (2015) 2319–6602.
K. Umezawa, T. Taniguchi, M. Toi, T. Ohse, N. Tsutsumi, T. Yamamoto, T. Koyano, M. Ishizuka, Growth inhibition of K-ras-expressing tumours by a new vinca alkaloid, conophylline, in nude mice., Drugs Exp. Clin. Res. 22 (1996) 35–40.
G. Bifulco, I. Bruno, R. Riccio, J. Lavayre, G. Bourdy, Further brominated bis-and tris-indole alkaloids from the deep-water New Caledonian marine sponge Orina Sp., J. Nat. Prod. 58 (1995) 1254–1260. DOI: https://doi.org/10.1021/np50122a017
S.D. Bhakare, S.B. Gaikwad, R.B. Jogdand, Bismuth triflate catalyzed ecofriendly and efficient synthesis of bis(indolyl)methanes by grinding approach, Heterocycl. Lett. 6 (2016) 421–425.
S. Mahala, P. Rakesh, S. Singh, A.K. Sharma, H. Joshi, Mn(I)‐NNSe Pincer Complex Catalyzed Regioselective Synthesis of Bisindolylmethanes under Base and Solvent‐Free Conditions, Asian J. Org. Chem. (2025) e00323. DOI: https://doi.org/10.1002/ajoc.202500323
G.D. Kotkar, S.G. Tilve, Sulfonic Acid-Functionalized Solid Polymer Catalyst from Crude Cashew Nut Shell Liquid: Synthesis of Tetra(indolyl)methanes and Bis(indolyl)methanes from Xylochemicals, ACS Omega 9 (2024) 47543–47556. DOI: https://doi.org/10.1021/acsomega.4c06337
D.R. Chandama, M.B. Deshmukha, A.G. Mulika, P.P. Patilb, D.R. Patila, S.D. Jagdalea, P. V. Anbhulea, S.A. Sankpala, An efficient synthesis of bis(indolyl) methanes under solvent free condition using Silica supported Chloroacetic Acid as reusable Catalyst, Der Pharm. Lett. 4 (2012) 54–60.
O. Article, Three-Component Synthesis of Bis(indolyl)methane with Sulfanilic Acid as an Efficient Catalyst, 2 (2024).
J. Banothu, R. Gali, R. Velpula, R. Bavantula, P.A. Crooks, An Eco-Friendly Improved Protocol for the Synthesis of Bis(3-indolyl)methanes Using Poly(4-vinylpyridinium)hydrogen Sulfate as Efficient, Heterogeneous, and Recyclable Solid Acid Catalyst, ISRN Org. Chem. 2013 (2013) 1–5. DOI: https://doi.org/10.1155/2013/616932
P. Naik C, G.B. Ashoka, A.H. Seikh, S. Dutta, Synthesis, characterization, and antibacterial activity of novel bis(indolyl)methanes sourced from biorenewable furfurals using gluconic acid aqueous solution (GAAS) as a sustainable catalyst, RSC Adv. 14 (2024) 21553–21562. DOI: https://doi.org/10.1039/D4RA03905J
L. Lei, B. Wang, D. Jin, Z. Gao, Huan‐Liang, S. Wang, X. Xu, K. Zhang, X. Zhang, Al(OTf)3‐Catalyzed Tandem Coupling Reaction between N,N‐Disubstituted Aminomalonitriles and Substituted Arenes: a Synthesis of 1‐Cyano‐bisindolylmethane Analogues≠, Adv. Synth. Catal. 362 (2020) 2870–2875. DOI: https://doi.org/10.1002/adsc.202000261
S.D. Pasuparthy, B. Maiti, Facile synthesis of bis(indol-3-yl)methane derivatives catalyzed by carboxylic acid functionalized ionic liquid at room temperature: Investigation of photophysical properties, DFT calculations and molecular docking with bovine serum albumin, Tetrahedron 153 (2024) 133845. DOI: https://doi.org/10.1016/j.tet.2024.133845
R.S. Varma, Chemical activation by mechanochemical mixing, microwave and ultrasonic irradiation, Green Chem. 10 (2008) 1129–1130. DOI: https://doi.org/10.1039/b817559b
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0