Review: Approved Heterocycles Based Antiviral Drugs

Authors

  • Adinath. D. Badar Department of Chemistry, Late Pushpadevi Patil Arts & Science College Risod Dist. Washim, Maharashtra, India Author
  • Pramod. S. Phatak Department of Chemistry, Late Pushpadevi Patil Arts & Science College Risod Dist. Washim, Maharashtra, India Author

DOI:

https://doi.org/10.32628/IJSRST251283

Abstract

Since the first principal antiviral drug, idoxuridine, was affirmed in 1963, 90 antiviral medications arranged into practical gatherings have been officially certified for the treatment of the accompanying nine human viral irresistible illnesses: (I) HIV infections (protein blocker, integrase viral enzyme inhibitors, passage inhibitors, glycosyl amines turn around transcriptase inhibitors, non-nucleoside control transcriptase inhibitors, and non-cyclic nucleoside phosphonate analogs), (ii) HBV Hepatitis B viral infection (lamivudine, interferons nucleoside inhibitor , furthermore, non-cyclic nucleoside phosphonate inhibitor), (iii) HCV Hepatitis C viral infection ( ribavirin, interferon, NS3/4A protein blocker, NS5A inhibitors, and NS5B DNA polymerase activity inhibitors), (iv) Herpesvirus diseases (5-subbed 2 -deoxyuridine analogues, segment inhibitors, nucleoside analogs, pyrophosphate analogues, and non-cyclic guanosine analogs), (v) flu infection infections (ribavirin, grid 2 -protein blocker, RNA polymerase inhibitors, and neuraminidase inhibitors), (vi) Human cytomega- lovirus disease (non-cyclic guanosine analogs, non-cyclic nucleoside phosphonate analogs, pyrophosphate analogs, and oligonu- cleotides), (vii) Varicella-Zoster infection disease (non-cyclic guanosine analogs, nucleoside analogs, 5-subbed 2-deoxyuridine analogs, and antibodies), (viii) Respiratory Syncytial Infection (ribavirin and antibodies), and (ix) outside anogenital moles brought about by human papillomavirus disease (imiquimod, sinecat- echins, and podofilox). Here, we present just an outline of heterocycles antiviral medications endorsed in the course of the last 50 years a long time, revealing insight into the advancement of viable antiviral medicines against the current flow and developing irresistible infections around the world.

Downloads

Download data is not yet available.

References

De Clercq E. 2004. Antivirals and antiviral strategies. Nat Rev Microbial, 2:704 –720. DOI: https://doi.org/10.1038/nrmicro975

De Clercq E. 2002. Strategies in the design of antiviral drugs. Nat Rev Drug, Discov., 1:13–25. DOI: https://doi.org/10.1038/nrd703

De Clercq E. 1997. In search of selective antiviral chemotherapy. Clin Microbiol Rev, 10:674 – 693. DOI: https://doi.org/10.1128/CMR.10.4.674

De Clercq E. 2009. The history of antiretrovirals: key discoveries over the past 25 years. Rev Med Virol 19:287–299. DOI: https://doi.org/10.1002/rmv.624

De Clercq E. 2009. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int J Antimicrob Agents, 33:307–320. DOI: https://doi.org/10.1016/j.ijantimicag.2008.10.010

De Clercq E, Li G. 2016. Approved antiviral drugs over the past 50 years. Clin Microbial Rev, 29:695–747. DOI: https://doi.org/10.1128/CMR.00102-15

Prusoff W. H. 1959. Synthesis and biological activities of iododeoxyuridine, an analog of thymidine. Biochim Biophys Acta, 32:295–296. DOI: https://doi.org/10.1016/0006-3002(59)90597-9

Kaufman H, Martola E. L, Dohlman C. 1962. Use of 5-iodo-2-deoxyuridine (IDU) in treatment of herpes simplex keratitis. Arch Ophthalmol, 68:235–239. DOI: https://doi.org/10.1001/archopht.1962.00960030239015

Kaufman H. E, Heidelberger C. 1964. Therapeutic antiviral action of 5-trifluoromethyl-2-deoxyuridine in herpes simplex keratitis. Science, 145:585–586. DOI: https://doi.org/10.1126/science.145.3632.585

Wilhelmus K.R. 2010. Antiviral treatment and other therapeutic interventions for herpes simplex virus epithelial keratitis. Cochrane Database Syst Rev, 8:CD002898. DOI: https://doi.org/10.1002/14651858.CD002898.pub4

De Clercq E. 2004. Discovery and development of BVDU (brivudin) as a therapeutic for the treatment of herpes zoster. Biochem Pharmacol, 68:2301–2315. DOI: https://doi.org/10.1016/j.bcp.2004.07.039

Andrei G, Sienaert R, McGuigan C, De Clercq E, Balzarini J, Snoeck R. 2005. Susceptibilities of several clinical varicella-zoster virus (VZV) isolates and drug-resistant VZV strains to bicyclicfurano pyrimidine nucleosides. Antimicrob Agents Chem other, 49:1081–1086. DOI: https://doi.org/10.1128/AAC.49.3.1081-1086.2005

Lin J.C, Smith M.C, Pagano J.S. 1985. Comparative efficacy and selectivity of some nucleoside analogs against Epstein-Barr virus. Antimicrob Agents Chemother, 27:971–973. DOI: https://doi.org/10.1128/AAC.27.6.971

Lahmer T, Hoffmann D, Heemann U, Kuchle C, Frank H. 2010. Epstein-Barr virus encephalitis after kidney transplantation and successful treatment with brivudine. Transpl Int, 23:24–25. DOI: https://doi.org/10.1111/j.1432-2277.2009.01045.x

Bergmann W, Feeney R. J. 1950. The isolation of a new thymine pentoside from sponges. J Am Chem Soc, 72:2809–2810. DOI: https://doi.org/10.1021/ja01162a543

Schabel F. M, 1968. The antiviral activity of 9-beta-D-arabinofuranosyladenine (ARA-A). Chemotherapy, 13:321–338. DOI: https://doi.org/10.1159/000220567

Cohen S. S, 1966. Introduction to the biochemistry of D-arabinosyl nucleosides. Prog Nucleic Acid, Res Mol Biol, 5:1–88. DOI: https://doi.org/10.1016/S0079-6603(08)60231-7

Whitley R. J, Ch’ien L. T, Dolin R, Galasso G. J, Alford C. A, Jr. 1976. Adenine arabinoside therapy of herpes zoster in the immune suppressed. NIAID collaborative antiviral study. N Engl J Med, 294:1193–1199. DOI: https://doi.org/10.1056/NEJM197605272942201

Brady R. C, Bernstein DI. 2004. Treatment of herpes simplex virus infections. Antiviral Res, 61:73–81. DOI: https://doi.org/10.1016/j.antiviral.2003.09.006

Mayer A. M, Glaser K. B, Cuevas C, Jacobs R. S , Kem W, Little R . D, McIntosh J. M, Newman D. J, Potts B. C, Shuster D. E. 2010. The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci, 31:255–265. DOI: https://doi.org/10.1016/j.tips.2010.02.005

Chang T. T, Gish R. G, de Man R, Gadano A, Sollano J, Chao Y. C, Lok A. S, Han K. H, Goodman Z, Zhu J, Cross A, DeHertogh D, Wilber R, Colonno R, Apelian D, B 2006. A comparison of entecavir and lamivudine for HBeAg-positive chronic hepatitis B. N Engl J Med, 354:1001–1010. DOI: https://doi.org/10.1056/NEJMoa051285

Lai C. L, Shouval D, Lok A. S, Chang T. T, Cheinquer H, Goodman Z, DeHertogh D, Wilber R, Zink R. C, Cross A, Colonno R, Fernandes L, 2006. Entecavir versus lamivudine for patients with HBeAg-negative chronic hepatitis B. N Engl J Med, 354: 1011–1020. DOI: https://doi.org/10.1056/NEJMoa051287

Tenney D. J, Rose R. E, Baldick C. J, Pokornowski K. A, Eggers B. J, Fang J, Wichroski M. J, Xu D, Yang J, Wilber R. B, Colonno R. J. 2009. Long-term monitoringshowshepatitisBvirusresistancetoentecavirinnucleosidenaive patients is rare through 5 years of therapy. Hepatology, 49:1503– 1514. DOI: https://doi.org/10.1002/hep.22841

McMahon M. A, Jilek B. L, Brennan T. P, Shen L, Zhou Y, Wind-Rotolo M, Xing S, Bhat S, Hale B, Hegarty R, Chong C. R, Liu J. O, Siliciano R. F, Thio C. L. 2007. The HBV drug entecavir—effects on HIV-1 replication and resistance. N Engl J Med, 356:2614–2621. DOI: https://doi.org/10.1056/NEJMoa067710

Hirsch M. S. 2007.Entecavirsurprise. N. Engl. J. Med, 356:2641–2643. DOI: https://doi.org/10.1056/NEJMe078045

Lai C. L, Gane E, Liaw Y. F, Hsu C.W, Thongsawat S, Wang Y, Chen Y, Heathcote E. J, Rasenack J, Bzowej N, Naoumov N. V, Di Bisceglie A. M, Zeuzem S, Moon Y. M, Goodman Z, Chao G, Constance B. F, Brown N. A, Globe Study Group. 2007. Telbivudine versus lamivudine in patients with chronic hepatitis B. N Engl J Med, 357:2576–2588. DOI: https://doi.org/10.1056/NEJMoa066422

Hou J, Yin Y. K, Xu D, Tan D, Niu J, Zhou X, Wang Y, Zhu L, He Y, Ren H, Wan M, Chen C, Wu S, Chen Y, Xu J, Wang Q, Wei L, Chao G, Constance B. F, Harb G, Brown N. A, Jia J. 2008. Telbivudine versus lamivudine in Chinese patients with chronic hepatitis B: result sat1year of a randomized, double-blind trial. Hepatology, 47:447–454. DOI: https://doi.org/10.1002/hep.22075

Lai C. L, Leung N, Teo E. K, Tong M, Wong F, Hann H. W, Han S, Poynard T, Myers M, Chao G, Lloyd D, Brown N. A, 2005. A 1-year trial of telbivudine, lamivudine, and the combination in patients with hepatitis B e antigen-positive chronic hepatitis B. Gastroenterology, 129:528–536. DOI: https://doi.org/10.1053/j.gastro.2005.05.053

Liang J, Jiang M. J, Deng X, Xiao Zhou X. 2013. Efficacy and safety of telbivudine compared to entecavir among HBeAg chronic hepatitis B patients: a meta-analysis study. Hepat Mon 13:7862. DOI: https://doi.org/10.5812/hepatmon.7862

World Health Organization. 2015. Guidelines for the prevention, care and treatment of persons with chronic hepatitis B infection. WHO, Geneva, Switzerland.

Lok A. S. F, 2016. Hepatitis B: 50 years after the discovery of Australia antigen. J Viral Hepat , 23:5–14. DOI: https://doi.org/10.1111/jvh.12444

Mitsuya H, Weinhold K. J, Furman P. A, St Clair M. H, Lehrman S. N, Gallo R. C, Bolognesi D, Barry D. W, Broder S. 1985. 3-Azido-3-eoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/ lymphadenopathy-associated virus in vitro. Proc Natl Acad Sci U.S.A, 82:7096–7100. DOI: https://doi.org/10.1073/pnas.82.20.7096

Mitsuya H, Broder S. 1986. Inhibition of the in vitro infectivity and cytopathic effect of human T-lymphotrophic virus type III/ lymphadenopathy-associated virus (HTLV-III/LAV) by 2-3-dideoxynucleosides. Proc Natl Acad Sci U S A, 83:1911–1915. DOI: https://doi.org/10.1073/pnas.83.6.1911

Baba M, Pauwels R, Herdewijn P, De Clercq E, Desmyter J, Vandeputte M. 1987. Both 2,3-dideoxythymidine and its 2,3-unsaturated derivative (2,3-dideoxythymidinene) are potent and selective inhibitors of human immune-deficiency virus replication in vitro. Biochem Biophys Res Commun, 142:128–134. DOI: https://doi.org/10.1016/0006-291X(87)90460-8

Lin T. S, Schinazi R. F, Prusoff W.H. 1987. Potent and selective in vitro activity of 3-deoxythymidine-2-ene (3-deoxy-2-3-didehydrothymidine) against human immunodeficiency virus. Biochem Pharmacol, 36: 2713–2718. DOI: https://doi.org/10.1016/0006-2952(87)90253-X

Hamamoto Y, Nakashima H, Matsui T, Matsuda A, Ueda T, Yamamoto N. 1987. Inhibitory effect of 2-3-dihydro-2,3 dideoxynucleosides on infectivity, cytopathic effects, and replication of human immunodeficiency virus. Antimicrob Agents Chemother, 31: 907–910. DOI: https://doi.org/10.1128/AAC.31.6.907

Soudeyns H, Yao X. I, Gao Q, Belleau B, Kraus J. L, Nguyen-Ba N, Spira B, Wainberg M. A. 1991. Anti-human immunodeficiency virus type 1 activity and in vitro toxicity of 2-deoxy-3-thiacytidine (BCH-189), a novel heterocyclic nucleoside analog. Antimicrob Agents Chemother, 35: 1386–1390. DOI: https://doi.org/10.1128/AAC.35.7.1386

Daluge S. M, Good S. S, Faletto M. B, Miller W. H, St Clair M. H, Boone L. R, Tisdale M, Parry N. R, Reardon J. E, Dornsife R. E, Averett D. R, Krenitsky T. A. 1997. a novel carbocyclic nucleoside analog with potent, selective anti-human immunodeficiency virus activity. Antimicrob Agents Chemother, 41:1082–1093. DOI: https://doi.org/10.1128/AAC.41.5.1082

Schinazi R. F, Boudinot F. D, Ibrahim S. S, Manning C, McClure H. M, Liotta D. C. 1992. Pharmacokinetics and metabolism of racemic 2,3-dideoxy-5-fluoro-3-thiacytidineinrhesusmonkeys. Antimicrob Agents Chemother, 36:2432–2435 DOI: https://doi.org/10.1128/AAC.36.11.2432

Furman P. A, Fyfe J. A, St Clair M. H, Weinhold K, Rideout J. L, Freeman G. A, Lehrman S. N, Bolognesi D. P, Broder S, Mitsuya H, Barry D. W. 1986. Phosphorylation of 3-azido-3-deoxythymidine and selective interaction of the 5-triphosphate with human immune-deficiency virus reverse transcriptase. Proc Natl Acad Sci U.S.A, 83:8333–8337. DOI: https://doi.org/10.1073/pnas.83.21.8333

Tu X, Das K, Han Q, Bauman J. D, Clark A. D, Jr, Hou X, Frenkel Y. V, Gaffney B. L, Jones R. A, Boyer P. L, Hughes S. H, Sarafianos S. G, Arnold E. 2010.Structural basis of HIV-1resistance to AZT by excision. Nat Struct Mol. Biol, 17:1202–1209. DOI: https://doi.org/10.1038/nsmb.1908

Wensing AM, Calvez V, Gunthard HF, Johnson VA, Paredes R, Pillay D, Shafer RW, Richman DD. 2015. 2015 update of the drug resistance mutations in HIV-1. Top Antivir Med 23:132–141.

Arts E. J, Hazuda D. J. 2012. HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med, 2: a00716. DOI: https://doi.org/10.1101/cshperspect.a007161

Charpentier C, Camacho R, Ruelle J, Eberle J, Gurtler L, Pironti A, Sturmer M, Brun-Vezinet F, Kaiser R, Descamps D, Obermeier M. 2015. HIV-2EU-supporting standardized HIV-2 drug-resistance interpretation in Europe: an update. Clin Infect Dis, 61:1346–1347. DOI: https://doi.org/10.1093/cid/civ572

Rokx C, Rijnders B. J. A. 2015. Evidence was gathered from randomized clinical trials and observational studies on the equivalence of emtricitabine and lamivudine. Clin Infect Dis, 60:1732–1733. DOI: https://doi.org/10.1093/cid/civ117

Ford N, Hill A, Vitoria M, Mills E. J. 2015. Editorial commentary. Comparative efficacy of lamivudine and emtricitabine: comparing the results of randomized trials and cohorts. Clin Infect Dis, 60:154–156. DOI: https://doi.org/10.1093/cid/ciu767

Montessori V, Press N, Harris M, Akagi L, Montaner J. S. 2004. Adverse effects of antiretroviral therapy for HIV infection. CMAJ, 170:229–238.

Hill A. 2013. Optimizing HIV treatment. Curr Opin HIV-AIDS, 8:34–40. DOI: https://doi.org/10.1097/COH.0b013e32835b7f28

Baba M, Tanaka H, De Clercq E, Pauwels R, Balzarini J, Schols D, Nakashima H, Perno C. F,WalkerR. T, Miyasaka. 1989. Highly specific inhibition of human immune deficiency virus type 1-byanovel6-substituted acyclouridine derivative. Biochem Biophys Res Commun, 165: 1375–1381. DOI: https://doi.org/10.1016/0006-291X(89)92756-3

Miyasaka T, Tanaka H, Baba M, Hayakawa H, Walker R. T, Balzarini J, De Clercq E. 1989. A novel lead for specific anti-HIV-1 agents: 1-[(2hydroxyethoxy) methyl]-6-(phenylthio-thymine. J Med Chem, 32:2507– 2509. DOI: https://doi.org/10.1021/jm00132a002

Pauwels R, Andries K, Desmyter J, Schols D, Kukla M. J, Breslin H. J, Raeymaeckers A, Van Gelder J, Woestenborghs R, Heykants J, Schellekens K, Janssen M. A. C, De Clercq E, Janssen P. A. 1990. Potent and selective inhibition of HIV-1replication in vitro by an ovelseries of TIBO derivatives. Nature, 343:470–474. DOI: https://doi.org/10.1038/343470a0

Baba M, De Clercq E, Tanaka H, Ubasawa M, Takashima H, Sekiya K, Nitta I, Umezu K, Nakashima H, Mori S, Shigeta S, Walker R. T, Miyasaka T. M. 1991. Potent and selective inhibition of human immune-deficiency virus type 1 (HIV-1) by 5-ethyl-6-phenylthiouracil derivatives through the interaction with the HIV-1reversetranscriptase. Proc Natl Acad Sci U.S.A, 88:2356–2360. DOI: https://doi.org/10.1073/pnas.88.6.2356

Baba M, De Clercq E, Tanaka H, Ubasawa M, Takashima H, Sekiya K, NittaI, Umezu K,WalkerR. T, Mori S.1991. Highly potent and selective inhibition of human immunodeficiency virus types 1 by a novel series of 6-substituted acyclouridine derivatives. Mol Pharmacol, 39:805–810. DOI: https://doi.org/10.1016/S0026-895X(25)11080-8

Debyser Z, Pauwels R, Andries K, Desmyter J, Kukla M, Janssen PA, De Clercq E.1991. An antiviral target on reverse transcriptase of human immunodeficiency virus type 1 revealed by tetrahydro-imidazo-[4, 5, 1-jk] [1,4]benzodiazepin-2 (1H)-one and -thione derivatives. Proc Natl Acad Sci U S A, 88:1451–1455. DOI: https://doi.org/10.1073/pnas.88.4.1451

Baba M, Shigeta S, Yuasa S, Takashima H, Sekiya K, Ubasawa M, Tanaka H, Miyasaka T, Walker R.T, De Clercq E. 1994. Preclinical evaluation of MKC-442, a highly potent and specific inhibitor of human immune-deficiency virus type 1 in vitro. Antimicrob Agents Chemother, 38:688–692. DOI: https://doi.org/10.1128/AAC.38.4.688

De Clercq E. 2005. Antiviral drug discovery and development: where chemistry meets with biomedicine. Antiviral Res, 67:56–75. DOI: https://doi.org/10.1016/j.antiviral.2005.05.001

De Clercq E. 2012. Where rilpivirine meets with tenofovir, the start of a new anti-HIV drug combination era. Biochem Pharmacol, 84:241–248. DOI: https://doi.org/10.1016/j.bcp.2012.03.024

Janssen P. A, Lewi P. J, Arnold E, Daeyaert F, de Jonge M, Heeres J, Koymans L, Vinkers M, Guillemont J, Pasquier E, Kukla M, Ludovici D, Andries K, de Bethune M. P, Pauwels R, Das K, Clark A. D, Jr, Frenkel Y. V, Hughes S. H, Medaer B, De Knaep F, Bohets H, De Clerck F, Lampo A, Williams P, Stoffels P. 2005. In search of a novel anti-HIV drug: multi-disciplinary coordination in the discovery of 4-[[4-[[4-[(1E) 2-cyanoethenyl]-2,6-dimethylphenylamino]-2-pyrimidinyl] amino] benzonitrile (R278474, rilpivirine). J Med Chem , 48:1901–1909. DOI: https://doi.org/10.1021/jm040840e

Warnke D, Barreto J, Temesgen Z. 2007. Antiretroviral drugs. J Clin Pharmaco, l47:1570-1579. DOI: https://doi.org/10.1177/0091270007308034

Roberts N A, Martin J A, Kinchington D, Broadhurst A V, Craig J C, Duncan I B, Galpin S. A, Handa B. K, Kay J, Krohn A, Lambert R. W, Merrett J. H, Mills J. S, Parkes K. E. B, Redshaw S, Ritchie A J, Taylor D L, Thomas G J, Machin P J. 1990. Rational design of peptide-based HIV proteinase inhibitors. Science, 248:358–361. DOI: https://doi.org/10.1126/science.2183354

De Clercq E. 2013. Dancing with chemical formulae of antivirals: a panoramic view (part 2). Biochem Pharmacol, 86:1397–1410. DOI: https://doi.org/10.1016/j.bcp.2013.09.010

Wensing A. M, van Maarseveen N. M, Nijhuis M. 2010. Fifteen years of HIV protease inhibitors: raising the barrier to resistance. Antiviral Res, 85:59–74. DOI: https://doi.org/10.1016/j.antiviral.2009.10.003

Li G, Verheyen J, Theys K, Piampongsant S, Van Laethem K, Vandamme A. M. 2014. HIV-1 Gag C-terminal amino acid substitutions emerging under the selective pressure of protease inhibitors in patient populations infected with different HIV-1 subtypes. Retrovirology, 11:79. DOI: https://doi.org/10.1186/PREACCEPT-1386531399130251

Li G, Theys K, Verheyen J, Pineda-Pena A, Khouri R, Piampongsant S, Eusebio M, Ramon J, Vandamme A. M. 2015. A new ensemble coevolution system for detecting HIV-1protein coevolution. Biol Direct, 10:1. DOI: https://doi.org/10.1186/s13062-014-0031-8

Rosenke, K., Hansen, F., Schwarz, B. et al. Orally delivered MK-4482 inhibits SARS-CoV-2 replication in the Syrian hamster model. Nat Commun 12, 2295 (2021). DOI: https://doi.org/10.1038/s41467-021-22580-8

Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-271. DOI: https://doi.org/10.1038/s41422-020-0282-0

Williamson BN, Feldmann F, Schwarz B, et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature. 2020. DOI: https://doi.org/10.1101/2020.04.15.043166

Press Information Bureau, Government of India. 2021-05-08. Retrieved 2021-05-09.

Downloads

Published

11-07-2025

Issue

Section

Research Articles