Gated Transformer with Dual Attention for Rumour Category Detection on Social Platforms

Authors

  • Gopeekrishnan R Department of Computer Science and Engineering, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, India Author
  • Dr M Thillaikarasi Department of Computer Science and Engineering, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, India Author

DOI:

https://doi.org/10.32628/IJSRST2513104

Keywords:

Transformer, Rumour Detection, Dual Attention, Gated Recurrent Unit (GRU), Social Media, Text Classification, Interpretability, Fake News,, Discourse Analysis

Abstract

The spread of misinformation and unverified content on social media has become a major concern in the digital age. Accurate categorization of rumours—into support, denial, query, or comment—is essential to assess the credibility and impact of online discourse. In this work, we propose a simplified yet effective deep learning framework that combines a Transformer-based encoder with a dual attention mechanism. The model captures fine-grained word-level semantics and post-level contextual relevance within conversation threads. By integrating gated recurrent units (GRUs) with word and post-level attention, the framework enhances the ability to distinguish rumour types based on linguistic and discourse cues. Experimental evaluations on two benchmark datasets, PHEME and RumourEval-19, demonstrate strong performance in terms of accuracy and F1-score. Furthermore, attention visualizations provide interpretability, making the model’s predictions more transparent and trustworthy.

📊 Article Downloads

References

Zubiaga, A., Liakata, M., & Procter, R. (2018). Detection and resolution of rumours in social media: A survey. ACM Computing Surveys, 51(2), 1–36. DOI: https://doi.org/10.1145/3161603

Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake news detection on social media: A data mining perspective. ACM SIGKDD Explorations, 19(1), 22–36. DOI: https://doi.org/10.1145/3137597.3137600

Zubiaga, A., Aker, A., Bontcheva, K., Liakata, M., & Procter, R. (2018). Detection and resolution of rumours in social media: A survey. Information Processing & Management, 54(2), 146–160. DOI: https://doi.org/10.1016/j.ipm.2017.11.009

Qazvinian, V., Rosengren, E., Radev, D., & Mei, Q. (2011). Rumor has it: Identifying misinformation in microblogs. Proceedings of EMNLP, 1589–1599.

Ma, J., Gao, W., & Wong, K. (2017). Detect rumors in microblog posts using propagation structure via kernel learning. ACL, 708–717. DOI: https://doi.org/10.18653/v1/P17-1066

Ma, J., Gao, W., & Wong, K. (2016). Detecting rumor threads in microblogging networks. AAAI, 101–110.

Liu, X., Nourbakhsh, A., Li, Q., Fang, R., & Shah, S. (2015). Real-time rumor debunking on Twitter. CIKM, 1867–1870. DOI: https://doi.org/10.1145/2806416.2806651

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical attention networks for document classification. NAACL-HLT, 1480–1489. DOI: https://doi.org/10.18653/v1/N16-1174

Zhou, X., & Zafarani, R. (2020). A survey of fake news: Fundamental theories, detection methods, and opportunities. ACM Computing Surveys, 53(5), 1–40. DOI: https://doi.org/10.1145/3395046

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv:1301.3781.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. NAACL-HLT, 4171–4186.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., … & Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT pretraining approach. arXiv:1907.11692.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … & Polosukhin, I. (2017). Attention is all you need. NeurIPS, 5998–6008.

Lin, Z., Feng, M., Santos, C. N. D., Yu, M., Xiang, B., Zhou, B., & Bengio, Y. (2017). A structured self-attentive sentence embedding. ICLR.

Kumar, S., Asthana, R., Upadhyay, S., Akhtar, M. S., & Ekbal, A. (2020). Synergistic multiple attention network for rumour verification on social media. Information Processing & Management, 57(2), 102–128.

Wu, L., Rao, Y., Yang, Y., & Yu, H. (2015). False rumor detection on Sina Weibo by propagation structures. ICDE, 651–662. DOI: https://doi.org/10.1109/ICDE.2015.7113322

Khattar, D., Goud, J. S., Gupta, M., & Varma, V. (2019). Multimodal deep learning for fake news detection. WWW, 2915–2921. DOI: https://doi.org/10.1145/3308558.3313552

Zhang, Q., Zhang, J., Dong, Y., & Philip, S. Y. (2019). Fake news detection with deep diffusive network model. IJCAI, 3812–3818.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. DOI: https://doi.org/10.1162/neco.1997.9.8.1735

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder–decoder for statistical machine translation. EMNLP, 1724–1734. DOI: https://doi.org/10.3115/v1/D14-1179

Ma, J., Gao, W., Mitra, P., Kwon, S., Jansen, B. J., Wong, K. F., & Cha, M. (2016). Detecting rumors from microblogs with recurrent neural networks. IJCAI, 3818–3824.

Bian, T., Xiao, X., Xu, T., Zhao, P., Huang, W., Rong, Y., … & Huang, J. (2020). Rumor detection on social media with bi-directional graph convolutional networks. AAAI, 549–556. DOI: https://doi.org/10.1609/aaai.v34i01.5393

Yuan, C., Ma, Q., Zhou, W., Han, J., Hu, S., & Hu, X. (2019). Jointly embedding the local and global relations of heterogeneous graph for rumor detection. ICDM, 796–805. DOI: https://doi.org/10.1109/ICDM.2019.00090

Gorrell, G., Kochkina, E., Liakata, M., Aker, A., Zubiaga, A., & Bontcheva, K. (2019). SemEval-2019 task 7: RumourEval. SemEval, 845–854.

Zubiaga, A., Liakata, M., Procter, R., Hoi, G. W. S., & Tolmie, P. (2016). Analysing how people orient to and spread rumours in social media by looking at conversational threads. PLoS ONE, 11(3), e0150989. DOI: https://doi.org/10.1371/journal.pone.0150989

Downloads

Published

06-09-2025

Issue

Section

Research Articles

How to Cite

Gated Transformer with Dual Attention for Rumour Category Detection on Social Platforms. (2025). International Journal of Scientific Research in Science and Technology, 12(5), 26-34. https://doi.org/10.32628/IJSRST2513104