Renewable Dual Fuel Generation through Fermentation and Transesterification of Sugarcane Juice and Waste Cooking Oil

Authors

  • Abhinav Research Intern, Rapture Biotech Pvt. Ltd, Mohali, Punjab, India Author
  • Puneet Senior Scientist, Rapture Biotech Pvt. Ltd, Mohali, Punjab, India Author
  • Gurinder Singh Research Associate, Rapture Biotech Pvt. Ltd, Mohali, Punjab, India Author
  • Harpreet Kaur Centre Director, Rapture Biotech Pvt. Ltd, Mohali, Punjab, India Author

DOI:

https://doi.org/10.32628/IJSRST251348

Keywords:

Bioethanol, Biodiesel, Sugarcane Juice, Waste Vegetable Oil, Fermentation, Transesterification, Fatty Acid Ethyl Esters (FAEEs), Renewable Energy, Sustainable Fuel Production

Abstract

This study presents an integrated approach for producing bioethanol and biodiesel from sugarcane juice and waste vegetable oil, two abundant agro-industrial by-products. Through optimized fermentation and transesterification processes, we achieved high ethanol yields and produced fatty acid ethyl esters meeting ASTM and EN fuel standards. This dual biofuel generation process supports India's national biofuel blending targets, promotes sustainability, and offers implications for global renewable energy strategies. The resulting biodiesel exhibited a cetane number of 53.6 and met ASTM D6751 and EN 14214 standards, confirming fuel-grade quality.

📊 Article Downloads

References

Saini, J. K., et al. (2015). Bioethanol production from agricultural residues. Renewable and Sustainable Energy Reviews, 42, 1122–1135.

Balat, M., et al. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34(5), 551–573. DOI: https://doi.org/10.1016/j.pecs.2007.11.001

Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52–68. DOI: https://doi.org/10.1016/j.pecs.2010.01.003

Demirbas, A. (2007). Importance of biomass energy sources for Turkey. Energy Policy, 35(8), 4242–4250. DOI: https://doi.org/10.1016/j.enpol.2007.04.003

Lima, M. A. P., et al. (2013). Sugarcane bagasse as feedstock for 2G bioethanol production. Renewable and Sustainable Energy Reviews, 29, 470–478.

Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology, 69(6), 627–642. DOI: https://doi.org/10.1007/s00253-005-0229-x

Chandel, A. K., et al. (2011). Improvement of ethanol production from lignocellulosic biomass. Bioresource Technology, 102(24), 11377–11385.

Gubicza, L., et al. (2016). Advanced bioethanol production. Biotechnology Advances, 34(5), 659–676.

Naik, S. N., et al. (2010). Production of first- and second-generation biofuels. Renewable and Sustainable Energy Reviews, 14(2), 578–597. DOI: https://doi.org/10.1016/j.rser.2009.10.003

Hahn-Hägerdal, B., et al. (2006). Role of microbial physiology in bioethanol production. Trends in Biotechnology, 24(12), 549–556. DOI: https://doi.org/10.1016/j.tibtech.2006.10.004

Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production. Bioresource Technology, 83(1), 1–11. DOI: https://doi.org/10.1016/S0960-8524(01)00212-7

Zhang, Y., et al. (2011). Overview of biofuels from lignocellulosic biomass. International Journal of Molecular Sciences, 12(8), 6072–6107.

Galbe, M., & Zacchi, G. (2002). A review of the production of ethanol from softwood. Applied Microbiology and Biotechnology, 59(6), 618–628. DOI: https://doi.org/10.1007/s00253-002-1058-9

Kiran, E. U., et al. (2014). Bioethanol production from algae. Renewable and Sustainable Energy Reviews, 40, 644–652.

Pathak, P., et al. (2017). Comparative study on use of molasses vs. sugarcane juice. Renewable Energy, 104, 464–470.

Arora, A., et al. (2010). Bioethanol production from sweet sorghum juice. Biomass and Bioenergy, 34(4), 515–520.

Mandal, B., & Mandal, S. (2017). Utilization of sugarcane juice and molasses for bioethanol. Energy Sources Part A, 39(9), 909–916.

Zheng, Y., et al. (2009). Pretreatment of lignocellulosic biomass. Biotechnology Advances, 27(2), 198–205.

Casey, G. P., & Ingledew, W. M. (1986). Ethanol tolerance in yeasts. Critical Reviews in Microbiology, 13(3), 219–280. DOI: https://doi.org/10.3109/10408418609108739

Taherzadeh, M. J., & Karimi, K. (2007). Enzyme-based hydrolysis processes for bioethanol. BioResources, 2(4), 707–738. DOI: https://doi.org/10.15376/biores.2.4.707-738

Walker, G. M. (2011). Fuel alcohol: current production and future challenges. Journal of the Institute of Brewing, 117(1), 3–22. DOI: https://doi.org/10.1002/j.2050-0416.2011.tb00438.x

Bai, F. W., et al. (2008). Ethanol fermentation technologies. Biotechnology Advances, 26(1), 89–105. DOI: https://doi.org/10.1016/j.biotechadv.2007.09.002

Osho, A. (1995). Ethanol production by Saccharomyces cerevisiae. African Journal of Biotechnology, 4(9), 985–988.

Yadav, R. S., et al. (2011). Bioethanol fermentation using sweet sorghum. Journal of Renewable and Sustainable Energy, 3(4), 043112.

You, T., et al. (2017). Fermentation efficiency of sugarcane juice. Biotechnology Reports, 13, 72–76.

Sindhu, R., et al. (2009). Bioethanol production from sugarcane juice. Fuel, 88(9), 1698–1702.

Chang, M. C. (2007). Ethanol purification techniques. Chemical Engineering Journal, 133(1), 1–3. DOI: https://doi.org/10.1016/j.cej.2010.07.018

EN 14214 (2012). Automotive fuels — Fatty acid methyl esters (FAME) for diesel engines — Requirements and test methods.

Meher, L. C., et al. (2006). Transesterification of vegetable oils. Renewable and Sustainable Energy Reviews, 10(3), 248–268. DOI: https://doi.org/10.1016/j.rser.2004.09.002

Devaraj, A., et al. (2011). Physical characterization of bioethanol. Fuel Processing Technology, 92(12), 2406–2411. DOI: https://doi.org/10.1016/j.fuproc.2011.09.003

Lapuerta, M., et al. (2008). Combustion of bioethanol–diesel blends. Energy & Fuels, 22(2), 1353–1359.

Vicente, G., et al. (2004). Biodiesel production using ethanol. Energy & Fuels, 18(2), 357–362.

Encinar, J. M., et al. (2005). Biodiesel from used frying oil. Fuel Processing Technology, 86(15), 1679–1686.

Leung, D. Y. C., et al. (2006). Biodiesel production review. Applied Energy, 83(11), 1083–1095.

Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86(10), 1059–1070. DOI: https://doi.org/10.1016/j.fuproc.2004.11.002

Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review. Bioresource Technology, 70(1), 1–15. DOI: https://doi.org/10.1016/S0960-8524(99)00025-5

EN ISO 3675 (1998). Crude petroleum and liquid petroleum products — Laboratory determination of density.

ASTM D1298-12b (2012). Standard test method for density, relative density (specific gravity), or API gravity of crude petroleum.

Downloads

Published

03-08-2025

Issue

Section

Research Articles

How to Cite

Renewable Dual Fuel Generation through Fermentation and Transesterification of Sugarcane Juice and Waste Cooking Oil. (2025). International Journal of Scientific Research in Science and Technology, 12(4), 797-804. https://doi.org/10.32628/IJSRST251348