Remote Detection of Uranium and Plutonium Using Wireless LIBS and AI
DOI:
https://doi.org/10.32628/IJSRST251377Keywords:
Remote Nuclear Detection, Laser-Induced Breakdown Spectroscopy (LIBS), Uranium and Plutonium Identification, Artificial Intelligence (AI) Classification, Plasma Diagnostics, Wireless Signal OptimizationAbstract
Nuclear threat detection remains a vital global security concern, particularly in environments requiring real-time, non-contact monitoring. This study presents a remote detection system that combines laser-induced breakdown spectroscopy (LIBS), machine learning, and wireless signal optimization to detect uranium and plutonium from distances of 30 to 70 meters. The DRUP-LIBS system utilizes both multi- and single-wavelength laser pulses to generate actinide-specific plasma emissions, which are analyzed using artificial intelligence with 100% classification accuracy. Wireless modules equipped with directional antennas maintained signal quality over long distances. Plasma temperature and electron density were measured using Boltzmann plots and Stark broadening, confirming plasma consistency. Results show that the system reliably distinguishes between uranium and plutonium, with plutonium exhibiting stronger emissions and higher electron density. These findings support DRUP-LIBS as a secure, non-intrusive tool for real-time radioactive threat detection in open environments.
📊 Article Downloads
References
H. Al-Hamrashdi, S. D. Monk, and D. Cheneler, “Passive gamma-ray and neutron imaging systems for national security and nuclear non-proliferation in controlled and uncontrolled detection areas: Review of past and current status,” Sensors, vol. 19, no. 11, art. 2638, Jun. 2019, doi: 10.3390/s19112638.. DOI: https://doi.org/10.3390/s19112638
E. D. Hunter, M. L. May, J. D. Cooper, and B. T. Smith, “Electron cyclotron resonance magnetometry with a plasma reservoir,” Physics of Plasmas, vol. 27, no. 3, pp. 032106, Mar. 2020. DOI: https://doi.org/10.1063/1.5141999
M. C. Zammit, A. S. Kadyrov, I. Bray, D. V. Fursa, A. T. Stelbovics, and A. M. Mukhamedzhanov, “Laser-driven production of the antihydrogen molecular ion,” Physical Review. A, vol. 100, p. 042709, Oct. 2019. DOI: https://doi.org/10.1103/PhysRevA.100.042709
R. Pavlovsky et al., “3-D gamma-ray and neutron mapping in real-time with the Localization and Mapping Platform from unmanned aerial systems and man-portable configurations,” arXiv preprint arXiv:1901.05038,2019, doi: 10.48550/arXiv.1901.05038.
R. E. Russo, J. J. González, D. Oropeza, C. Liu, J. Chirinos, and G. C.-Y. Chan, “Isotopic analysis of uranium at the picogram level with single-shot laser-induced breakdown spectroscopy,” Spectrochim. Acta B, vol. 211, art. 106928, 2024, doi: 10.1016/j.sab.2024.106928. DOI: https://doi.org/10.1016/j.sab.2024.106928
E. G. Myers, “CPT tests with the antihydrogen molecular ion,” Physical Review letter. A, vol. 98, no. 1, p. 010101, July 2018.
E. Bolea-Fernandez, R. Clough, A. Fisher, B. Gibson, and B. Russell, “Atomic spectrometry update: review of advances in the analysis of metals, chemicals and materials,” J. Anal. At. Spectrom., vol. 39, pp. 2617–2693, 2024, doi: 10.1039/D4JA90052A. DOI: https://doi.org/10.1039/D4JA90052A
J. D. Smith, R. P. Brown, and L. Zhang, “Investigation of plasma temperature and ionization dynamics in high-energy laser fields,” Physical. Reviews. Letter., vol. 120, p. 235001, June 2018.
A. Capra and the ALPHA Collaboration, “Machine learning for antihydrogen detection at ALPHA,” Journal of Physics.: Conferences. Serial., vol. 1085, p. 042007, 2018. DOI: https://doi.org/10.1088/1742-6596/1085/4/042007
B. T. Manard, E. M. Wylie, and S. P. Willson, “Analysis of rare earth elements in uranium using handheld laser-induced breakdown spectroscopy (HH LIBS),” Appl. Spectrosc., vol. 72, no.11,pp.1653–1660, Nov. 2018, doi:10.1177/0003702818775431. DOI: https://doi.org/10.1177/0003702818775431
Z. Yue et al., “Machine learning efficiently corrects LIBS spectrum variation due to change of laser fluence,” Opt. Express, vol. 28, no. 10, pp. 14345–14356, May 2020, doi:10.1364/OE.392176. DOI: https://doi.org/10.1364/OE.392176
Y. Huang, S. S. Harilal, A. Bais, et al, “Progress toward machine learning methodologies for laser-induced breakdown spectroscopy with an emphasis on soil analysis,” IEEE Trans. Plasma Sci., vol. 51, no. 7, pp. 1729–1749, Jul. 2023, doi: 10.1109/TPS.2022.3231985. DOI: https://doi.org/10.1109/TPS.2022.3231985
C. J. Sullivan, T. A. Roberts, and B. K. McDonald, “Portable neutron generators for nuclear material detection,” Nuclear Instruments. Methods in Physics. Research. A, vol. 834, pp. 1–7, July 2016.
P. Hamilton, A. Zhmoginov, F. Robicheaux, J. Fajans, J. S. Wurtele, and H. Müller, “Antimatter interferometry for gravity measurements,” Phys. Rev. Lett., vol. 112, no. 12, p. 121102, Mar. 2014, doi:10.1103/PhysRevLett.112.121102. DOI: https://doi.org/10.1103/PhysRevLett.112.121102
S. Stracka, “Real-time detection of antihydrogen annihilations and applications to spectroscopy,” *EPJ Web of Conferences*, vol. 71, p. 00126, 2014, doi: 10.1051/epjconf/20147100126. DOI: https://doi.org/10.1051/epjconf/20147100126
C. Amole *et al*., “In situ electromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap,” *New Journal of Physics*, vol. 16, p. 013037, Jan. 2014, doi: 10.1088/1367-2630/16/1/013037. DOI: https://doi.org/10.1088/1367-2630/16/1/013037
C. G. Parthey, A. Matveev, and J. Alnis, “Improved measurement of the hydrogen 1S–2S transition frequency,” Physical. Review. Letter. vol. 107, p. 203001, Nov. 2011.
D. A. Cremers, A. Beddingfield, et al., “Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer,” Appl. Spectrosc., vol. 66, no. 3, pp. 347–356, 2012, doi: 10.1366/11-06314. DOI: https://doi.org/10.1366/11-06314
S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,”
A. W. Miziolek, V. Palleschi, and I. Schechter, *Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications*. Cambridge, U.K.: Cambridge Univ. Press, 2006. DOI: https://doi.org/10.1017/CBO9780511541261
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0