Adsorption of Heavy Metals from Waste Water Using Low Cost- Adsorbent: A Review

Authors

  • Ratnadipa Ukey Post Graduate and Research Center, Maulana Azad College of Arts, Science and Commerce, RauzaBagh, Aurangabad (431001), Maharashtra, India Author
  • Samreen Fatema Post Graduate and Research Center, Maulana Azad College of Arts, Science and Commerce, RauzaBagh, Aurangabad (431001), Maharashtra, India Author
  • Sayed Abed Post Graduate and Research Center, Maulana Azad College of Arts, Science and Commerce, RauzaBagh, Aurangabad (431001), Maharashtra, India Author

DOI:

https://doi.org/10.32628/IJSRST251387

Keywords:

Heavy Metals, Adsorption, low cost Adsorbent, Wastewater

Abstract

Environmental pollution, notably water pollution, has escalated into a critical global issue, profoundly affecting ecosystems and human health. Heavy metals are especially alarming among the numerous pollutants due to their toxicity, persistence, and non-biodegradability. With the help of different technologies the effect of toxic metal ions can be minimized but out of all, adsorption was found to be very effective due to ease of operation and economically effective properties. Low cost adsorbent in number has been investigated as to replace current costly methods of removing heavy metals from solution. Through this review, several low cost adsorbents in the recent have been studied. The maximum adsorption capacity and percentage removal were revised and summarized in this review for further reference. Some of the natural adsorbents appeared as good heavy metal removal, while some were not. The objective of this study is to contribute in the search for less expensive adsorbents and their utilization possibilities for various agricultural waste by-products such as seaweed, algae, banana peel, egg shell and saw dust etc. to remove heavy metals from the wastewater.

📊 Article Downloads

References

Sigel, H (Ed), Metal ions in biological System, Dekker, New York, 1988, p.24.

Bradl, H. (Ed.). (2005). Heavy metals in the environment: origin, interaction and remediation. Elsevier.

Srivastava NK, Majumder CB. Novel bio filtration methods for the treatment of heavy metals from industrial wastewater. Journal of hazardous materials. 2008 Feb 28;151(1):1-8. DOI: https://doi.org/10.1016/j.jhazmat.2007.09.101

Sonone, S. S., Jadhav, S., Sankhla, M. S., & Kumar, R. (2020). Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett. Appl. NanoBioScience, 10(2), 2148-2166. DOI: https://doi.org/10.33263/LIANBS102.21482166

Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2019). Remediation of wastewater using various nano-materials. Arabian journal of chemistry, 12(8), 4897-4919. DOI: https://doi.org/10.1016/j.arabjc.2016.10.004

Khalef,R.N.,Hassan,A.I.,&Saleh,H.M.(2022).Heavymetal’senvironmentalimpact.InEnvironmental Impact and Remediation of Heavy Metals. IntechOpen.

Velarde, L., Nabavi, M. S., Escalera, E., Antti, M. L., & Akhtar, F. (2023). Adsorption of heavy metals on natural zeolites: A review. Chemosphere, 328, 138508. DOI: https://doi.org/10.1016/j.chemosphere.2023.138508

Fu,Z.,&Xi,S. (2020).The effects of heavy metals on human metabolism. Toxicology mechanisms and methods, 30(3), 167-176. DOI: https://doi.org/10.1080/15376516.2019.1701594

Landaburu-Aguirre J, Garcia V, Pongracz E, Keiski RL. The removal of zinc from synthetic wastewaters by micellar-enhanced ultra filtration: statistical design of experiments. Desalination. 2009 May 15;240(1-3):262-9. DOI: https://doi.org/10.1016/j.desal.2007.11.077

Zhao M, Xu Y, Zhang C, Rong H, Zeng G. New trends in removing heavy metals from waste water. Applied microbiology and biotechnology. 2016 Aug 1;100(15):6509-18. DOI: https://doi.org/10.1007/s00253-016-7646-x

Abdullah N, Yusof N, Lau WJ, Jaafar J, Ismail AF. Recent trends of heavy metal removal from water/ wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry. 2019 Aug 25;76:17-38. DOI: https://doi.org/10.1016/j.jiec.2019.03.029

Crini G, Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters. 2019 Mar 1;17(1):145-55. DOI: https://doi.org/10.1007/s10311-018-0785-9

Kongsricharoern N, Polprasert C. Electrochemical precipitation of chromium (Cr6+) from an electroplating wastewater. Water Science and Technology. 1995 May 1;31(9):109. DOI: https://doi.org/10.2166/wst.1995.0350

Charerntanyarak L. Heavy metals removal by chemical coagulation and precipitation. Water Science and Technology. 1999 Jan 1;39(10-11):135-8. DOI: https://doi.org/10.2166/wst.1999.0642

Mirbagheri SA, Hosseini SN. Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse. Desalination. 2005 Jan 1;171(1):85-93. DOI: https://doi.org/10.1016/j.desal.2004.03.022

TanongK, TranLH, Mercier, G, Blais, JF. Recovery of Zn (II), Mn (II) Cd (II) and Ni (II) from the unsorted spent batteries using solvent extraction, electrodeposition and precipitation methods, J. Clean. Prod. 148 (2017) 233-244. DOI: https://doi.org/10.1016/j.jclepro.2017.01.158

Peng H, Guo J. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electro coagulation, electrochemic reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. Environmental Chemistry Letters. 2020 Jul 23:1-4.

Abo-Farha, SA, Abdel-Aal, AY, Ashour, IA, Garamon, SE. Removal of some heavy metal cations by synthetic resin purolite C100, J. Hazard. Mater. 169 (2009)190-194. DOI: https://doi.org/10.1016/j.jhazmat.2009.03.086

Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. Journal of environmental management. 2011 Mar 1;92(3):407-18. DOI: https://doi.org/10.1016/j.jenvman.2010.11.011

Agarwal M, Singh K. Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination. 2017 Dec;7(4):387-419. DOI: https://doi.org/10.2166/wrd.2016.104

Molinari R, Poerio T, Argurio P. Selective separation of copper (II) and nickel (II) from aqueous media using the complexation– ultrafiltration process. Chemosphere. 2008 Jan 1; 70(3) : 341-8. DOI: https://doi.org/10.1016/j.chemosphere.2007.07.041

Tripathi A, Ranjan MR. Heavy metal removal from wastewater using low cost adsorbents. J BioremedBiodeg. 2015 Jan;6(6):315.

Singh N, Gupta SK. Adsorption of heavy metals: A review. Int. J.Innov. Res. Sci. Eng. Technol. 2016 Feb;5(2):2267-81.

Freundlich HM. Over the adsorption in solution. J. Phys. Chem. 1906 Mar;57 (385471) :1100-7.

Vaaramaa,K.,&Lehto,J.(2003).Removalofmetalsandanionsfromdrinkingwaterbyionexchange. Desalination,155(2),157-170. DOI: https://doi.org/10.1016/S0011-9164(03)00293-5

BrbootI, M. M., Abid, B. A., & Al-ShuwaikI, N. M. (2011). Removal of heavy metals using chemicals precipitation. Eng. Technol. J, 29(3), 595-612. DOI: https://doi.org/10.30684/etj.29.3.15

Tang, X., Zheng, H., Teng, H., Sun, Y., Guo, J., Xie, W., ... & Chen, W. (2016). Chemical coagulation process for the removal of heavy metals from water: a review. Desalination and water treatment, 57(4), 1733-1748. DOI: https://doi.org/10.1080/19443994.2014.977959

Huang, Y. C., & Koseoglu, S. S. (1993). Separation of heavy metals from industrial waste streams by membrane separation technology. Waste management, 13(5-7), 481-501. DOI: https://doi.org/10.1016/0956-053X(93)90079-C

Bakalár, T., Búgel, M., & Gajdošová, L. (2009). Heavy metal removal using reverse osmosis. Acta Montanistica Slovaca, 14(3), 250.

Rajendran, S., Priya, A. K., Kumar, P. S., Hoang, T. K., Sekar, K., Chong, K. Y., ... & Show, P. L. (2022). A criticalandrecentdevelopmentsonadsorptiontechniqueforremovalofheavymetalsfromwastewater-A review. Chemosphere, 303, 135146. DOI: https://doi.org/10.1016/j.chemosphere.2022.135146

Wang, F. Y., Wang, H., & Ma, J. W. (2010). Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal. Journal of hazardous materials, 177(1-3), 300-306.

Dubey, A. M. S. S. A., Mishra, A., & Singhal, S. (2014). Application of dried plant biomass as novel lowcost adsorbent for removal of cadmium from aqueous solution. International journal of environmental science and technology, 11, 1043-1050.

Tripathi, A., & Ranjan, M. R. (2015). Heavy metal removal from wastewater using low cost adsorbents. J Bioremed Biodeg, 6(6), 315.

Lim, A. P., & Aris, A. Z. (2014). A review on economically adsorbents on heavy metals removal in water and wastewater. Reviews in Environmental Science and Bio/Technology, 13, 163-181.

Chen, Y., Wang, H., Zhao, W., & Huang, S. (2018). Four different kinds of peels as adsorbents for the removal of Cd (II) from aqueous solution: Kinetics, isotherm and mechanism. Journal of the Taiwan Institute of Chemical Engineers, 88, 146-151.

Efficacy and field applicability of Burmese grape leaf extract (BGLE) for cadmium removal: An implication of metal removal from natural water. Ecotoxicol.

Pandey, R., Ansari, N. G., Prasad, R. L., & Murthy, R. C. (2014). Removal of Cd (II) ions from simulated wastewater by HCl modified Cucumis sativus peel: Equilibrium and kinetic study. Air, Soil and Water Research, 7, ASWR-S16488.

Memon, J. R., Memon, S. Q., Bhanger, M. I., Memon, G. Z., El-Turki, A., & Allen, G. C. (2008). Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal. Colloids and Surfaces B: Biointerfaces, 66(2), 260-265.

Iqbal, M., Saeed, A., & Zafar, S. I. (2009). FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. Journal of hazardous materials, 164(1), 161-171.

Dang, V. B. H., Doan, H. D., Dang-Vu, T., & Lohi, A. (2009). Equilibrium and kinetics of biosorption of cadmium (II) and copper (II) ions by wheat straw. Bioresource technology, 100(1), 211-219.p

Sun, G., & Shi, W. (1998). Sunflower stalks as adsorbents for the removal of metal ions from wastewater. Industrial & engineering chemistry research, 37(4), 1324-1328.

Pehlivan, E., Altun, T., Cetin, S., & Bhanger, M. I. (2009). Lead sorption by waste biomass of hazelnut and almond shell. Journal of hazardous materials, 167(1-3), 1203-1208.

Owamah, H. I. (2014). Biosorptive removal of Pb (II) and Cu (II) from wastewater using activated carbon from cassava peels. Journal of Material Cycles and Waste Management, 16, 347-358.

Aydın, H., Bulut, Y., & Yerlikaya, Ç. (2008). Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. Journal of environmental management, 87(1), 37-45.

Gupta, M., Gupta, H., & Kharat, D. S. (2018). Adsorption of Cu (II) by low cost adsorbents and the cost analysis. Environmental technology & innovation, 10, 91-101.

Milicevic, S., Boljanac, T., Martinovic, S., Vlahovic, M., Milosevic, V., & Babic, B. (2012). Removal of copperfromaqueoussolutionsbylowcostadsorbent-Kolubaralignite.FuelProcessingTechnology,95,1- 7.

Khan, T. A., Mukhlif, A. A., & Khan, E. A. (2017). Uptake of Cu2+ and Zn2+ from simulated wastewater using muskmelon peel biochar: Isotherm and kinetic studies. Egyptian journal of basic and applied sciences, 4(3), 236-248. DOI: https://doi.org/10.1016/j.ejbas.2017.06.006

FENG,N.C.,&GUO,X.Y.(2012).Characterizationofadsorptivecapacityandmechanismsonadsorption of copper, lead and zinc by modified orange peel. Transactions of Nonferrous Metals Society of China, 22(5), 1224-1231. DOI: https://doi.org/10.1016/S1003-6326(11)61309-5

El-Ashtoukhy, E. S., Amin, N. K., & Abdelwahab, O. (2008). Removal of lead (II) and copper (II) from aqueous solution using pomegranate peelas a newadsorbent. Desalination, 223(1-3), 162-173.

Iqbal, M., Saeed, A., & Kalim, I. (2009). Characterization of adsorptive capacity and investigation of mechanism of Cu2+, Ni2+ and Zn2+ adsorption on mango peel waste from constituted metal solution and genuine electroplating effluent. Separation Science and Technology, 44(15), 3770-3791.

Annadurai, G., Juang, R. S., & Lee, D. J. (2003). Adsorption of heavy metals from water using banana and orange peels. Water science and technology, 47(1), 185-190.

Owamah,H. I. (2014). Biosorptive removal of Pb (II) and Cu (II) from wastewater using activated carbon from cassava peels. Journal of Material Cycles and Waste Management, 16, 347-358.

Nakbanpote,W.,Thiravetyan,P.,&Kalambaheti,C.(2000).Preconcentrationofgoldbyricehuskash. Mineralsengineering,13(4),391-400. DOI: https://doi.org/10.1016/S0892-6875(00)00021-2

Doke, K. M., Yusufi, M., Joseph, R. D., & Khan, E. M. (2012). Biosorption of hexavalent chromium onto wood apple shell: equilibrium, kinetic and thermodynamic studies. Desalination and Water Treatment, 50(1-3), 170-179. DOI: https://doi.org/10.1080/19443994.2012.708565

Babu,B.V.,&Gupta,S.(2008).AdsorptionofCr(VI)usingactivatedneemleaves:kineticstudies. Adsorption,14,85-92. DOI: https://doi.org/10.1007/s10450-007-9057-x

Tazrouti, N., & Amrani, M. (2009). CHROMIUM (VI) ADSORPTION ONTO ACTIVATED KRAFT LIGNIN PRODUCED FROM ALFA GRASS (STIPA TENACISSIMA). BioResources, 4(2). DOI: https://doi.org/10.2166/wpt.2009.038

Cempel,M.,&Nikel,G.J.P.J.S.(2006).Nickel:areviewofitssourcesandenvironmentaltoxicology. Polishjournalofenvironmentalstudies,15(3).

Friberg, L., & Elinder, C. G. (1993). Biological monitoring of toxic metals. Scandinavian journal of work, environment & health, 7-13.

Begum, W., Rai, S., Banerjee, S., Bhattacharjee, S., Mondal, M. H., Bhattarai, A., & Saha, B. (2022). A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC advances, 12(15), 9139-9153. DOI: https://doi.org/10.1039/D2RA00378C

Coogan,T.P.,Latta,D.M.,Snow,E.T.,Costa,M.,&Lawrence,A.(1989).Toxicityandcarcinogenicityof nickel compounds. CRC Critical reviews in toxicology, 19(4), 341-384. DOI: https://doi.org/10.3109/10408448909029327

Aydın, H., Bulut, Y., & Yerlikaya, Ç. (2008). Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. Journal of environmental management, 87(1), 37-45. DOI: https://doi.org/10.1016/j.jenvman.2007.01.005

Gupta, M., Gupta, H., & Kharat, D. S. (2018). Adsorption of Cu (II) by low cost adsorbents and the cost analysis. Environmental technology & innovation, 10, 91-101. DOI: https://doi.org/10.1016/j.eti.2018.02.003

Milicevic, S., Boljanac, T., Martinovic, S., Vlahovic, M., Milosevic, V., & Babic, B. (2012). Removal of copper from aqueous solutions by low cost adsorbent-Kolubara lignite. Fuel Processing Technology, 95, 1-7. DOI: https://doi.org/10.1016/j.fuproc.2011.11.005

Feng, N., Guo, X., Liang, S., Zhu, Y., & Liu, J. (2011). Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. Journal of hazardous materials, 185(1), 49-54 DOI: https://doi.org/10.1016/j.jhazmat.2010.08.114

Herrera-Barros, A., Bitar-Castro, N., Villabona-Ortíz, Á., Tejada-Tovar, C., & González-Delgado, Á. D. (2020).NickeladsorptionfromaqueoussolutionusinglemonpeelbiomasschemicallymodifiedwithTiO2 nanoparticles. Sustainable Chemistry and Pharmacy, 17, 100299 DOI: https://doi.org/10.1016/j.scp.2020.100299

Olufemi, B., & Eniodunmo, O. (2018). Adsorption of nickel (II) ions from aqueous solution using banana peel and coconut shell. International Journal of Technology, 9(3) DOI: https://doi.org/10.14716/ijtech.v9i3.1936

Bhatnagar, A., & Minocha, A. K. (2010). Biosorption optimization of nickel removal from water using Punica granatum peel waste. Colloids and Surfaces B: Biointerfaces, 76(2), 544-548. DOI: https://doi.org/10.1016/j.colsurfb.2009.12.016

Ranasinghe, S.H.,Navaratne,A.N., &Priyantha,N.(2018).Enhancementofadsorptioncharacteristicsof Cr(III)andNi(II)bysurfacemodificationofjackfruitpeelbiosorbent.JournalofEnvironmentalChemical Engineering, 6(5), 5670-5682. DOI: https://doi.org/10.1016/j.jece.2018.08.058

Torab-Mostaedi, M., Asadollahzadeh, M., Hemmati, A., & Khosravi, A. (2013). Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 295-302. DOI: https://doi.org/10.1016/j.jtice.2012.11.001

El-Sayed, G. O., Dessouki, H. A., & Ibrahim, S. S. (2010). Biosorption of Ni (II) and Cd (II) ions from aqueous solutions onto rice straw. Chemical Sciences Journal, 9, 1-11. DOI: https://doi.org/10.4172/2150-3494.1000007

Malkoc, E., & Nuhoglu, Y. (2005). Investigations of nickel (II) removal from aqueous solutions using tea factory waste. Journal of hazardous materials, 127(1-3), 120-128. DOI: https://doi.org/10.1016/j.jhazmat.2005.06.030

Vázquez, G., Calvo, M., Freire, M. S., González-Alvarez, J., & Antorrena, G. (2009). Chestnut shell as heavymetaladsorbent:optimizationstudyof lead, copperand zinccationsremoval.JournalofHazardous Materials, 172(2-3), 1402-1414. DOI: https://doi.org/10.1016/j.jhazmat.2009.08.006

Jalilic, M. C. B. V. I. (2012). A comparative experimental study of the removal of heavy metals using low cost natural adsorbents and commerical activated carbon. International Journal, 3(1).

Naiya, T. K., Bhattacharya, A. K., & Das, S. K. (2008). Adsorption of Pb (II) by sawdust and neem bark from aqueous solutions. Environmental Progress, 27(3), 313-328. DOI: https://doi.org/10.1002/ep.10280

Ara,A.,&Usmani,J.A.(2015).Lead toxicity: are view. Interdisciplinary toxicology,8(2),55-64. DOI: https://doi.org/10.1515/intox-2015-0009

Papanikolaou, N. C., Hatzidaki, E. G., Belivanis, S., Tzanakakis, G. N., & Tsatsakis, A. M. (2005). Lead toxicity update. A brief review. Medical science monitor, 11(10), RA329-RA336.]

Naja, G. M., & Volesky, B. (2017). Toxicity and sources of Pb, Cd, Hg, Cr, As, and radionuclides in the environment. In Handbook of advanced industrial and hazardous wastes management (pp. 855-903). Crc Press. DOI: https://doi.org/10.1201/9781315117423-27

Jacques,R.A.,Lima,E.C.,Dias,S.L.,Mazzocato,A.C.,&Pavan,F.A.(2007).Yellow passion-fruit shellas biosorbent to remove Cr (III) and Pb (II) from aqueous solution. Separation and Purification Technology, 57(1), 193-198. DOI: https://doi.org/10.1016/j.seppur.2007.01.018

Adekola,F.A.,Adegoke,H. I.,& Ajikanle,R.A.(2016).Kinetic and equilibrium studies of Pb (II)and Cd (II) adsorption on African wild mango (Irvingia gabonensis) shell. Bulletin of the Chemical Society of Ethiopia, 30(2), 185-198. DOI: https://doi.org/10.4314/bcse.v30i2.3

Moreno-Barbosa, J. J., López-Velandia, C., Maldonado, A. D. P., Giraldo, L., & Moreno-Piraján, J. C. (2013). Removal of lead(II) and zinc (II) ions from aqueous solutions by adsorption onto activated carbon synthesized from watermelon shell and walnut shell. Adsorption, 19, 675-685. DOI: https://doi.org/10.1007/s10450-013-9491-x

Sudha,R.,& Premkumar,P.(2016).Lead removal by waste organic plant source materials review. International Journal of ChemTechResearch,9(01),47-57.

Wanja, N.E.,Murungi, J.,Ali, A.H.,&Wanjau,R.(2016).Efficacy of adsorption of Cu(II), Pb(II) and Cd (II) Ions onto acid activated watermelon peels biomass from water. International Journal of Science and Research, 5(8), 671-679. DOI: https://doi.org/10.21275/ART2016929

El-Ashtoukhy, E. S., Amin, N. K., & Abdelwahab, O. (2008). Removal of lead (II) and copper (II) from aqueous solution using pomegranate peelas a newadsorbent. Desalination, 223(1-3), 162-173. DOI: https://doi.org/10.1016/j.desal.2007.01.206

Iqbal, M., Saeed, A., & Zafar, S. I. (2009). FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. Journal of hazardous materials, 164(1), 161-171.

Chao,H. P.,Chang, C.C.,& Nieva, A. (2014). Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugar cane bagasse in a fixed-bed column. Journal of Industrial and Engineering Chemistry, 20(5), 3408-3414. DOI: https://doi.org/10.1016/j.jiec.2013.12.027

Okafor, P. C., Okon, P. U., Daniel, E. F., & Ebenso, E. E. (2012). Adsorption capacity of coconut (Cocos nucifera L.) shell for lead, copper, cadmium and arsenic from aqueous solutions. International Journal of Electrochemical Science, 7(12), 12354-12369. DOI: https://doi.org/10.1016/S1452-3981(23)16550-3

Šoštarić, T. D., Petrović, M. S., Pastor, F. T., Lončarević, D. R., Petrović, J. T., Milojković, J. V., & Stojanović, M.D. (2018). Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment. Journal of Molecular Liquids, 259, 340-349. DOI: https://doi.org/10.1016/j.molliq.2018.03.055

Wang, F. Y., Wang, H., & Ma, J. W. (2010). Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal. Journal of hazardous materials, 177(1-3), 300-306. DOI: https://doi.org/10.1016/j.jhazmat.2009.12.032

Dubey, A. M. S. S. A., Mishra, A., & Singhal, S. (2014). Application of dried plant biomass as novel low- cost adsorbent for removal of cadmium from aqueous solution. International journal of environmental science and technology, 11, 1043-1050. DOI: https://doi.org/10.1007/s13762-013-0278-0

Tripathi, A., & Ranjan, M. R. (2015). Heavy metal removal from wastewater using low cost adsorbents. J Bioremed Biodeg, 6(6), 315. DOI: https://doi.org/10.4172/2155-6199.1000315

Lim, A. P., & Aris, A. Z. (2014). A review on economically adsorbents on heavy metals removal in water and wastewater. Reviews in Environmental Science and Bio/Technology, 13, 163-181. DOI: https://doi.org/10.1007/s11157-013-9330-2

Chen, Y., Wang, H., Zhao, W., & Huang, S. (2018). Four different kinds of peels as adsorbents for the removal of Cd (II) from aqueous solution: Kinetics, isotherm and mechanism. Journal of the Taiwan Institute of Chemical Engineers, 88, 146-151. DOI: https://doi.org/10.1016/j.jtice.2018.03.046

Efficacy and field applicability of Burmese grape leaf extract (BGLE)for cadmium removal: Animplication of metal removal from natural water. Ecotoxicol.

Pandey, R., Ansari, N. G., Prasad, R. L., & Murthy, R. C. (2014). Removal of Cd (II) ions from simulated wastewater by HCl modified Cucumis sativus peel: Equilibrium and kinetic study. Air, Soil and Water Research, 7, ASWR-S16488. DOI: https://doi.org/10.4137/ASWR.S16488

Memon, J. R., Memon, S. Q., Bhanger, M. I., Memon, G. Z., El-Turki, A., & Allen, G. C. (2008). Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal. Colloids and Surfaces B: Biointerfaces, 66(2), 260-265. DOI: https://doi.org/10.1016/j.colsurfb.2008.07.001

Iqbal, M., Saeed, A., & Zafar, S. I. (2009). FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. Journal of hazardous materials, 164(1), 161-171. DOI: https://doi.org/10.1016/j.jhazmat.2008.07.141

Dang, V. B. H., Doan, H. D., Dang-Vu, T., & Lohi, A. (2009). Equilibrium and kinetics of biosorption of cadmium (II) and copper (II) ions by wheat straw. Bioresource technology, 100(1), 211-219.p DOI: https://doi.org/10.1016/j.biortech.2008.05.031

Sun,G.,&Shi,W.(1998).Sunflower stalks as adsorbents for the removal of metal ions from wastewater. Industrial & engineering chemistry research,37(4),1324-1328. DOI: https://doi.org/10.1021/ie970468j

Pehlivan,E.,Altun,T.,Cetin,S.,&Bhanger,M.I.(2009).Lead adsorption by waste biomass of hazel nut and almond shell. Journal of hazardous materials, 167(1-3), 1203-1208. DOI: https://doi.org/10.1016/j.jhazmat.2009.01.126

Owamah, H. I. (2014). Biosorptive removal of Pb (II) and Cu (II) from wastewater using activated carbon from cassava peels. Journal of Material Cycles and Waste Management, 16, 347-358. DOI: https://doi.org/10.1007/s10163-013-0192-z

Prasad, A. S. (2008). Zinc in human health: effect of zinc on immune cells. Molecular medicine, 14, 353- 357. DOI: https://doi.org/10.2119/2008-00033.Prasad

Frassinetti,S.,Bronzetti,G.L.,Caltavuturo,L.,Cini,M.,&DellaCroce,C.(2006).Theroleofzincinlife:a review. Journal of environmental pathology, toxicology and oncology, 25(3). DOI: https://doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i3.40

Fosmire,G.J.(1990).Zinctoxicity.TheAmericanjournalofclinicalnutrition,51(2),225-227. DOI: https://doi.org/10.1093/ajcn/51.2.225

Iqbal, M., Saeed, A., & Kalim, I. (2009). Characterization of adsorptive capacity and investigation of mechanism of Cu2+, Ni2+ and Zn2+ adsorption on mango peel waste from constituted metal solution and genuine electroplating effluent. Separation Science and Technology, 44(15), 3770-3791. DOI: https://doi.org/10.1080/01496390903182305

Saeed, A., Iqbal, M., & Akhtar, M. W. (2005). Removal and recovery of lead (II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). Journal of hazardous materials, 117(1), 65-73. DOI: https://doi.org/10.1016/j.jhazmat.2004.09.008

Bhattacharya, A. K., Mandal, S. N., & Das, S. K. (2006). Adsorption of Zn (II) from aqueous solution by using different adsorbents. Chemical Engineering Journal, 123(1-2), 43-51.

Bhattacharya, A. K., Mandal, S. N., & Das, S. K. (2006). Adsorption of Zn (II) from aqueous solution by using different adsorbents. Chemical Engineering Journal, 123(1-2), 43-51. DOI: https://doi.org/10.1016/j.cej.2006.06.012

Mohammod, M., Sen, T. K., Maitra, S., & Dutta, B. K. (2011). Removal of Zn 2+ from aqueous solution using castor seed hull. Water, Air, & Soil Pollution, 215, 609-620. DOI: https://doi.org/10.1007/s11270-010-0503-0

Shukla, S. R., Pai, R. S., & Shendarkar, A. D. (2006). Adsorption of Ni (II), Zn (II) and Fe (II) on modified coir fibres. Separation and purification technology, 47(3), 141-147. DOI: https://doi.org/10.1016/j.seppur.2005.06.014

Mondal, M. K., Singh, R. S., Kumar, A., & Prasad, B. M. (2011). Removal of acid red-94 from aqueous solution using sugar cane dust: An agro-industry waste. Korean Journal of Chemical Engineering, 28, 1386-1392. DOI: https://doi.org/10.1007/s11814-010-0523-x

Annadurai, G., Juang, R. S., & Lee, D. J. (2003). Adsorption of heavy metals from water using banana and orange peels. Water science and technology, 47(1), 185-190. DOI: https://doi.org/10.2166/wst.2003.0049

Adamu,N.,&Kumar,J.(2022).Review on chromium: the rapeuticuses and toxico logical effects on human health. The Journal of Multidisciplinary Research, 23-30. DOI: https://doi.org/10.37022/tjmdr.v2i3.399

Pereira, S. C., Oliveira, P. F., Oliveira, S. R., Pereira, M. D. L., & Alves, M. G. (2021). Impact of environmental and life style use of chromium on male fertility: focus on antioxidant activity and oxidative stress. Antioxidants, 10(9), 1365. DOI: https://doi.org/10.3390/antiox10091365

Ukhurebor,K.E.,Aigbe,U.O.,Onyancha,R.B.,Nwankwo,W.,Osibote,O.A.,Paumo,H.K.,...&Siloko, I. U. (2021). Effect of hexavalent chromium on the environment and removal techniques: a review. Journal of Environmental Management, 280, 111809. DOI: https://doi.org/10.1016/j.jenvman.2020.111809

DesMarias, T. L., & Costa, M. (2019). Mechanisms of chromium-induced toxicity. Current opinion in toxicology, 14, 1-7. DOI: https://doi.org/10.1016/j.cotox.2019.05.003

Marín, A. P., Ortuno, J. F., Aguilar, M. I., Meseguer, V. F., Sáez, J., & Lloréns, M. (2010). Use of chemical modification to determine the binding of Cd (II), Zn (II) and Cr (III) ions by orange waste. Biochemical Engineering Journal, 53(1), 2-6. DOI: https://doi.org/10.1016/j.bej.2008.12.010

Memon, J. R., Memon, S. Q., Bhanger, M. I., El-Turki, A., Hallam, K. R., & Allen, G. C. (2009). Banana peel: a green and economical sorbent for the selective removal of Cr(VI) from industrial waste water. Colloids and surfaces B:Biointerfaces, 70(2),232-237 DOI: https://doi.org/10.1016/j.colsurfb.2008.12.032

Henryk,K.,Jarosław,C.,&Witold,Ż.(2016).Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewaters. Environmental Science and Pollution Research, 23, 527-534. DOI: https://doi.org/10.1007/s11356-015-5285-x

Vieira, M. G. A., de Almeida Neto, A. F., Silva, M. G., Nóbrega, C. C., & Melo Filho, A. A. (2012). Characterization and use of in natura and calcined rice husks for biosorption of heavy metals ions from aqueous effluents. Brazilian Journal of Chemical Engineering, 29, 619-634. DOI: https://doi.org/10.1590/S0104-66322012000300019

Dakiky, M., Khamis, M., Manassra, A., & Mer'Eb, M. (2002). Selective adsorption of chromium (VI) in industrial waste water using low-cost abundantly available adsorbents. Advances in environmental research, 6(4), 533-540. DOI: https://doi.org/10.1016/S1093-0191(01)00079-X

Sharma, D. C., & Forster, C. F. (1994). A preliminary examination into the adsorption of hexavalent chromium using low-cost adsorbents. Bioresource Technology, 47(3), 257-264. DOI: https://doi.org/10.1016/0960-8524(94)90189-9

Sarin,V.,&Pant,K.(2006).Removal of chromium from industrial waste by using eucalyptus bark. Bioresource technology,97(1),15-20. DOI: https://doi.org/10.1016/j.biortech.2005.02.010

Qaiser, S., Saleemi, A. R., & Umar, M. (2009). Biosorption of lead (II) and chromium (VI) on groundnut hull: Equilibrium, kinetics and thermodynamics study. Electronic journal of Biotechnology, 12(4), 3-4. DOI: https://doi.org/10.2225/vol12-issue4-fulltext-6

Downloads

Published

12-08-2025

Issue

Section

Research Articles

How to Cite

Adsorption of Heavy Metals from Waste Water Using Low Cost- Adsorbent: A Review. (2025). International Journal of Scientific Research in Science and Technology, 12(4), 1054-1067. https://doi.org/10.32628/IJSRST251387