Role of Secondary Metabolites in Alpha-Amylase Inhibition in Diabetes
DOI:
https://doi.org/10.32628/IJSRST251393Keywords:
Diabetes mellitus, α-amylase inhibition, medicinal plants, Yucca, Buxus bonsai, Syngonium, antioxidant activity, phenolic estimation, DPPH assayAbstract
This study aims to establish the anti-diabetic potential of three medicinal plant yucca, Buxus bonsai , and Syngonium, this study adopted phytochemical screening tests. Widely allowed methods to assess antioxidant strength (DPPH assay), phenolic level (Folin-Ciocalteu method), and antibacterial activity (disc diffusion) were observed to test ethanol fresh leaves extract. The results indicated the differences in the phytochemical compositions of the plants. Yucca was the highest in phenolics (1.7 mg/mL) and the most potent in antioxidant activity (67.8% DPPH scavenging) and Buxus bonsai had the highest anti-diabetic profile with 66.16 percent inhibition of α-amylase. Syngonium failed to exhibit any significant symptom of alpha-amylase inhibition but demonstrated high levels of antibacterial activity. These findings indicate that Yucca possess significant antioxidant properties and Buxus bonsai possesses high anti-diabetic potential. The evidence further requests additional clinical studies and sustains the healing capabilities of these medicinal plants as a treatment of diabetes.
📊 Article Downloads
References
Kaushik, A., Kaushik, M., & Kaushik, M. S. (2022). Recent updates on Ayurveda based Phytoconstitutents for Treatment of Diabetes Mellitus. Current Traditional Medicine, 8(4). https://doi.org/10.2174/2215083808666220126144650 DOI: https://doi.org/10.2174/2215083808666220126144650
Shehadeh, M. B., Suaifan, G. A. R. Y., & Abu-Odeh, A. M. (2021). Plants Secondary Metabolites as Blood Glucose-Lowering Molecules. Molecules, 26(14), 4333. https://doi.org/10.3390/MOLECULES26144333 DOI: https://doi.org/10.3390/molecules26144333
Patel, D., Kumar, R., Laloo, D., & Hemalatha, S. (2012). Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pacific Journal of Tropical Biomedicine, 2(5), 411–420. https://doi.org/10.1016/S2221-1691(12)60067-7 DOI: https://doi.org/10.1016/S2221-1691(12)60067-7
Deka, H., Choudhury, A., & Dey, B. (2022). An Overview on Plant Derived Phenolic Compounds and Their Role in Treatment and Management of Diabetes. Journal of Pharmacopuncture, 25, 199–208. https://doi.org/10.3831/KPI.2022.25.3.199 DOI: https://doi.org/10.3831/KPI.2022.25.3.199
Shukla, P., Gangani, H., & Maury, S. (2024). In-vitro Investigation of Polyherbal Granules Potency on Inhibition of Alpha – Amylase Enzyme. International Journal For Multidisciplinary Research. https://doi.org/10.36948/ijfmr.2024.v06i01.12420 DOI: https://doi.org/10.36948/ijfmr.2024.v06i01.12420
Gusmalawati, D., Azrianingsih, R., Wibowo, A., Tribudi, Y. A., Rousdy, W., Wahyudi, D., Tri, A., & Widodo, N. (2024). An Insight on Potential Role of Glucomannan, Mannan, and Flavonoids in Porang Tubers (Amorphophallus muelleri Blume) as Anti-Diabetic Through the Alpha-amylase Inhibition. Jordan Journal of Biological Sciences, 17(02), 293–299. https://doi.org/10.54319/jjbs/170209 DOI: https://doi.org/10.54319/jjbs/170209
Salau, V., Erukainure, O., Aljoundi, A., Akintemi, E., Elamin, G., & Odewole, O. A. (2024). Exploring the inhibitory action of betulinic acid on key digestive enzymes linked to diabetes via in vitro and computational models: approaches to anti-diabetic mechanisms. 1–22. https://doi.org/10.1080/1062936x.2024.2352729 DOI: https://doi.org/10.1080/1062936X.2024.2352729
Morales-Figueroa, Gloria-Guadalupe & Pereo-Vega, Gabriel & Reyna-Murrieta, Manuel & Pérez Morales, Rosalva & López Mata, Marco Antonio & Sánchez-Escalante, José & Tapia-Rodríguez, Melvin & Ayala-Zavala, J. Fernando & Juárez, Josué & Quihui, Luis. (2022). Antibacterial and Antioxidant Properties of Extracts of Yucca Baccata, a Plant of Northwestern Mexico, against Pathogenic Bacteria. BioMed Research International. 2022. 10.1155/2022/9158836. DOI: https://doi.org/10.1155/2022/9158836
Shaikh, J. R., & Patil, M. (2020). Qualitative tests for preliminary phytochemical screening: An overview. International Journal of Chemical Studies, 8(2), 603–608. https://doi.org/10.22271/chemi.2020.v8.i2i.8834 DOI: https://doi.org/10.22271/chemi.2020.v8.i2i.8834
Kadir DH. Statistical evaluation of main extraction parameters in twenty plant extracts for obtaining their optimum total phenolic content and its relation to antioxidant and antibacterial activities. Food Sci Nutr. 2021;9(7):3491-3499. Published 2021 May 6. doi:10.1002/fsn3.2288 DOI: https://doi.org/10.1002/fsn3.2288
Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants (Basel). 2019;8(4):96. Published 2019 Apr 11. doi:10.3390/plants8040096 DOI: https://doi.org/10.3390/plants8040096
Madaan R, Bansal G, Kumar S, Sharma A. Estimation of Total Phenols and Flavonoids in Extracts of Actaea spicata Roots and Antioxidant Activity Studies. Indian J Pharm Sci. 2011;73(6):666-669. doi:10.4103/0250-474X.100242 DOI: https://doi.org/10.4103/0250-474X.100242
Mishra, Krishnanand & Ojha, Himanshu & Chaudhury, Nabo. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: Critical review and results. Food Chemistry. 130. 1036-1043. 10.1016/j.foodchem.2011.07.127. DOI: https://doi.org/10.1016/j.foodchem.2011.07.127
Alam S, Sarker MMR, Sultana TN, Chowdhury MNR, Rashid MA, Chaity NI, Zhao C, Xiao J, Hafez EE, Khan SA, Mohamed IN. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front Endocrinol (Lausanne). 2022 Feb 24;13:800714. doi: 10.3389/fendo.2022.800714. PMID: 35282429; PMCID: PMC8907382. DOI: https://doi.org/10.3389/fendo.2022.800714
Nazir, N., Zahoor, M., Nisar, M., Khan, I., Karim, N., Abdel-Halim, H., & Ali, A. (2018). Phytochemical analysis and antidiabetic potential of Elaeagnus umbellata (Thunb.) in streptozotocin-induced diabetic rats: pharmacological and computational approach. BMC Complementary and Alternative Medicine, 18(1), 332. https://doi.org/10.1186/s12906-018-2381-8 DOI: https://doi.org/10.1186/s12906-018-2381-8
Arumugam, G., Manjula, P., & Paari, N. (2013). A review: Anti diabetic medicinal plants used for diabetes mellitus. Journal of Acute Disease, 2(3), 196–200. https://doi.org/10.1016/S2221-6189(13)60126-2 DOI: https://doi.org/10.1016/S2221-6189(13)60126-2
Salehi, B., Ata, A., v. Anil Kumar, N., Sharopov, F., Ramírez-Alarcón, K., Ruiz-Ortega, A., Abdulmajid Ayatollahi, S., Valere Tsouh Fokou, P., Kobarfard, F., Amiruddin Zakaria, Z., Iriti, M., Taheri, Y., Martorell, M., Sureda, A., N. Setzer, W., Durazzo, A., Lucarini, M., Santini, A., Capasso, R., … Sharifi-Rad, J. (2019).
Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules, 9(10), 551. https://doi.org/10.3390/biom9100551 DOI: https://doi.org/10.3390/biom9100551
Grover, J. K., Yadav, S., & Vats, V. (2002). Medicinal plants of India with anti-diabetic potential. Journal of Ethnopharmacology, 81(1), 81–100. https://doi.org/10.1016/S0378-8741(02)00059-4 DOI: https://doi.org/10.1016/S0378-8741(02)00059-4
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0