Study of MA0.7FA0.3PbI3 Based Perovskite Solar Cell
DOI:
https://doi.org/10.32628/IJSRST251491Keywords:
Provskite, Sollar Cell, MAPbI3, FAPbI3Abstract
Perovskite solar cells (PSCs) bring a revolution in photovoltaic industry because of their easy manufacturing and high efficiency. PSCs have become very popular among researchers due to their desirable optical and electronic properties, such as tuneable band gap [1], large absorption coefficient [2], high charge carrier mobility [3], long diffusion lengths [4] and lower cost compared to conventional crystalline Si solar cells [5].The most investigated material in PSCs is MAPbI3 [6], however its thermal stability is also a source of worry due to volatile nature of organic cations. The low band gap (1.45 eV) of FAPbI3 attracts researchers since it is close to the Shockley-Queisser limit [7]. FAPbI3, on the other hand, contains a minor amount of yellow phase (δ-phase), which is unsuitable for long- term solar applications [8]. The lack of stability in FAPbI3 has hampered the development of FAPbI3-based PSC. However, while the PCE of PSCs is relatively good, these solar cells are extremely vulnerable to water due to the hydrophilic nature of organic cations. As a result, PSCs in an aquatic environment become unstable. These features prompted us to investigate perovskite materials with mixed cations.
📊 Article Downloads
References
M. Mittal, A. Jana, S. Sarkar, P. Mahadevan and S. Sapra, J. Phys. Chem. Lett., 2016, 7, 3270. DOI: https://doi.org/10.1021/acs.jpclett.6b01406
S. De Wolf, J. Holovsky, S. J. Moon, P. Löper, B. Niesen, M. Ledinsky and C. Ballif, J. Phys. Chem. Lett., 2014, 5, 1035. DOI: https://doi.org/10.1021/jz500279b
Y. Wang, Y. Zhang, P. Zhang and W. Zhang, Phys Chem Chem Phys., 2015, 17, 11516. DOI: https://doi.org/10.1039/C5CP00448A
A. A. Zhumekenov, M. I. Saidaminov, M. A. Haque, E. Alarousu, S. P. Sarmah, B. Murali and O. M. Bakr, ACS Energy Lett., 2016, 1, 32. DOI: https://doi.org/10.1021/acsenergylett.6b00002
E. Akman, A. E. Shalan, F. Sadegh and S. Akin, ChemSusChem, 2021, 14, 1176. DOI: https://doi.org/10.1002/cssc.202002707
W. Li, Z. Chen, J. Tang and O. V. Prezhdo, Chem. Mater., 2020, 32, 4707. DOI: https://doi.org/10.1021/acs.chemmater.0c01287
S. Pachori, S. Kumari and A. S. Verma, J. Mater. Sci. Mater. Electron., 2020, 31, 18004. DOI: https://doi.org/10.1007/s10854-020-04352-0
C. Wang, D. Zhao, Y. Yu, N. Shrestha, C. R. Grice, W. Liao and Y. Yan, Nano Energy, 2017, 35, 223. DOI: https://doi.org/10.1016/j.nanoen.2017.03.048
Z. Irshad, M. Adnan and J. K. Lee, J. Mater. Sci., 2022, 57, 1936. DOI: https://doi.org/10.1007/s10853-022-06867-9
H. Dong, J. Mo, S. Pang, D. Chen, W. Zhu, H. Xi and Y. Hao, J. Mater. Sci., 2018, 53, 16500. DOI: https://doi.org/10.1007/s10853-018-2780-8
J. P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress and A. Hagfeldt, Science, 2017, 358, 739. DOI: https://doi.org/10.1126/science.aam6323
Y. An, C. Wang, G. Cao and X. Li, ACS nano, 2020, 14, 5017. DOI: https://doi.org/10.1021/acsnano.0c01392
A. K. Al-Mousoi and M. K. Mohammed, J. Sol-gel Sci. Technol., 2020, 96, 659. DOI: https://doi.org/10.1007/s10971-020-05380-2
D. Han, Q. Yuan, Z. Slanina, X. Tang, S. Yi, D.Y. Zhou and L. Feng, Sol. RRL, 2021, 5, 2000629. DOI: https://doi.org/10.1002/solr.202000629
M. Burgelman, P. Nollet and S. Degrave, Thin solid films, 2000, 361, 527. DOI: https://doi.org/10.1016/S0040-6090(99)00825-1
M. Burgelman, K. Decock, S. Khelifi and A. Abass, Thin Solid Films, 2013, 535, 296. DOI: https://doi.org/10.1016/j.tsf.2012.10.032
F. Hazeghi and S. M. B. Ghorashi, Mater. Res. Express, 2019, 6, 095527. DOI: https://doi.org/10.1088/2053-1591/ab2f1b
L. Hao, T. Li, X. Ma, J. Wu, L. Qiao, X. Wu, G. Hou, H. Pie, X. Wang and X. Zhang, Opt. Quantum Electron., 2021, 53, 1. DOI: https://doi.org/10.1007/s11082-021-03175-5
X. Liu, T. Wu, C. Zhang, Y. Zhang, H. Segawa and L. Han, Adv. Funct. Mater., 2021, 31, 2106560. DOI: https://doi.org/10.1002/adfm.202106560
J. Bing, Signature, 2020, 26, 07. DOI: https://doi.org/10.18553/jmcp.2020.26.1.07
D. Zhao, Y. Yu, C. Wang, W. Liao, N. Shrestha, C. R. Grice and Y. Yan, Nat. Energy, 2017, 2, 1. DOI: https://doi.org/10.1038/nenergy.2017.18
A. Mohanty, D. Swain, S. Govinda, T. N. G. Row and D. D. Sarma, ACS Energy Lett., 2019, 4, 2045. DOI: https://doi.org/10.1021/acsenergylett.9b01291
R. A. Awni, Z. Song, C. Chen, C. Li, C. Wang, M. A. Razooqi and Y. Yan, Joule, 2020, 4, 644. DOI: https://doi.org/10.1016/j.joule.2020.01.012
R. Saha, K. Chakraborty, M. G. Choudhury and S. J. Paul, Nano- Electron. Phys, 2021, 13, 03019. DOI: https://doi.org/10.21272/jnep.13(3).03019
S. Karthick, S. Velumani and J. Bouclé, Sol. Energy, 2020, 205, 349. DOI: https://doi.org/10.1016/j.solener.2020.05.041
A. Kuddus, M. F. Rahman, S. Ahmmed, J. Hossain and A. B. M. Ismail, Superlattices Microstruct., 2019, 132, 106168. DOI: https://doi.org/10.1016/j.spmi.2019.106168
F. Izadi, A. Ghobadi, A. Gharaati, M. Minbashi and A. Hajjiah, Optik, 2021, 227, 166061. DOI: https://doi.org/10.1016/j.ijleo.2020.166061
R. Ali, Z. G. Zhu, Q. B. Yan, Q. R. Zheng, G. Su, A. Laref, C. S. Saraj and C. Guo, ACS Appl. Mater. Interfaces., 2020, 12, 49636. DOI: https://doi.org/10.1021/acsami.0c14595
K. R. Adhikari, S. Gurung, B. K. Bhattarai and B. M. Soucase, Phys. Status Solidi C, 2016, 13, 13. DOI: https://doi.org/10.1002/pssc.201510078
N. Lakhdar and A. Hima, Opt. Mater., 2020, 99, 109517. DOI: https://doi.org/10.1016/j.optmat.2019.109517
A. K. Patel, P. K. Rao, R. Mishra and S. K. Soni, Optik, 2021, 243, 167498. DOI: https://doi.org/10.1016/j.ijleo.2021.167498
S. Srivastava, A. K. Singh, P. Kumar and B. Pradhan, J. Appl. Phys., 2022, 131, 175001. DOI: https://doi.org/10.1063/5.0088099
S. Yasin, T. Al Zoubi and M. Moustafa, Optik, 2021, 229, 166258. DOI: https://doi.org/10.1016/j.ijleo.2021.166258
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0