Synthesis, Characterization, and Biological Activities of Novel Schiff Bases Derived from 3-acetyl-4-hydroxy-2h-chromen-2-one and 5-(4-ethoxy/ halo substituted phenyl)-1,3,4-oxadiazol-2-amine

Authors

  • Jadhav R. L. Department of Chemistry, Swa. Sawarkar College, Beed, Maharashtra, India Author
  • Ubale S.B. Department of Chemistry, Swa. Sawarkar College, Beed, Maharashtra, India Author

DOI:

https://doi.org/10.32628/IJSRST524112100

Keywords:

Coumarin, -acetyl-4-hydroychromen-2-one, 5-(4-ethoxy/ halo substituted phenyl)-1, 4-oxadiazol-2-amine, Schiff bases

Abstract

Five novel Schiff base ligands (5a-e) were synthesized by condensing 3-acetyl-4-hydroxy-2H-chromen-2-one with 5-(4-ethoxy/ halo substituted phenyl)-1, 3, 4-oxadiazol-2-amine. Their structures were confirmed using different methods like elemental analysis, infrared spectra, 1H and 13C NMR, and mass spectroscopy. The antibacterial and antifungal activity of the synthesized compounds was studied against selected bacterial cultures; gram- negative E. coli, S. typhi and gram-positive S. aureus, B. subtilis. It was observed that all the compounds except 5a showed strong antibacterial effects against these bacteria, similar to penicillin, which is a standard antibacterial drug, because they contain halogen elements. Furthermore, they underwent testing against fungi like A. niger, P. chrysogenum, F. moniliforme and A. flavus, employing the poison plate method. Compound 5a had moderate antifungal activity compared to 5b-e. Compounds 5b-e showed excellent antifungal activity, similar to Griseofulvin, a standard antifungal drug. In brief, it may be concluded that antimicrobial activity may be attributed to the presence of both the Coumarin and oxadiazole moiety in the molecule.

Downloads

Download data is not yet available.

References

S. Imran; M. Taha; and et. al, “Synthesis of Novel Bisindolylmethane Schiff bases and Their Antibacterial Activity”. Mole., Vol: 19, pp.11722-11740, (2014). DOI: https://doi.org/10.3390/molecules190811722

J. John Talley, J. Donald Rogier Jr., Both of St. Louis, MO, Pt No: 5 434, G.D. Searle & Co., Skokie, pp. 178 (1995).

S.V. Bhandari, K.G. Bothara, M.K. Raut, A.A. Patil, A.P. Sarkate, V.J. Mokale, Design, “Synthesis and Evaluation of Antiinflammatory, Analgesic and Ulcerogenicity studies of Novel S-Substituted phenacyl-1,3,4-oxadiazole-2-thiol and Schiff bases of Diclofenac acid as Nonulcerogenic Derivatives; Bioorganic & medicinal chemistry”, Vol:16 (4), pp.1822-1831 (2008). DOI: https://doi.org/10.1016/j.bmc.2007.11.014

S.K. Sridhar, S.N. Pandeya, J.P. Stables, A. Ramesh, “Anticonvulsant activity of hydrazones, Schiff & Mannich bases of isatin derivatives” Eur J Pharm Sci.; Vol:16(3): pp.129-32 (2002). DOI: https://doi.org/10.1016/S0928-0987(02)00077-5

Patole J.; Shingnapurkar D.; Padhye S.; Ratledge C., “Schiff base conjugates of p-aminosalicylic acid as antimycobacterial agents”, Bioorg Med Chem Lett, Vol.16(6), pp.1514-1517, (2006). DOI: https://doi.org/10.1016/j.bmcl.2005.12.035

M.J. Hearn, M.H. Cynamon, “Design & synthesis of antituberculars: preparation and evaluation against Mycobacterium tuberculosis of an isoniazid Schiff base”, J. Antimicrobial Chemotherapy, Vol: 53(2), pp.185–191, (2004). DOI: https://doi.org/10.1093/jac/dkh041

S. Ren, R. Wang, K. Komatsu, P. Bonaz-Krause, Y. Zyrianov, C. E. McKenna, C. Csipke, Z. A. Tokes, E. J. Lien, “Synthesis biological evaluation and quantitative structure-activity relationship analysis of new Schiff bases of hydroxysemicarbazide as potential antitumor agents” J. Med. Chem. Vol: 45(2), pp.410–419 (2002). DOI: https://doi.org/10.1021/jm010252q

J.P. Kalpana, B.M. Raizon, M. Desarmenien, P. Feltz, P.M. Headley, P. Worms, K.G. Lloyd, G. Bartholini, “New anticonvulsants: Schiff bases of y-aminobutyric acid and y-aminobutyramide”, J. Med. Chem. Vol:23; pp.702–704 (1980). DOI: https://doi.org/10.1021/jm00180a029

L. Shi, H. M. Ge, and et. al., “Synthesis & Antimicrobial Activities of Schiff Bases Derived from 5-Chloro-Salicylaldehyde,” European J. of Med. Chem., Vol: 42(4), pp. 558-564, (2007). DOI: https://doi.org/10.1016/j.ejmech.2006.11.010

(a) R. D. H. Murray, J. Mendez and S. A. Brown, “The Natural Coumarins,” Wiley, Chichester, (1982). (b) R.D.H. Murray, “Progress in the Chemistry of Organic Natural Products”, Vol: 35, 199 (1978).

Naser-Hijazi B., Stolze B., Zanker K.S. 2nd “Proceedings of the International Society of Coumarin Investigators” Springer; Berlin, Germany: (1994).

O’ Kennedy R., Thornes R.D. Coumarins: Biology, “Applications and Mode of Action” Wiley & Sons; Chichester, UK: (1997).

C. Gnerre, M. Catto, F. Leonetti, P. Weber, P. A. Carrupt, C. Altomare, A. Carotti, B. Testa, “Inhibition of monoamine oxidases by functionalized coumarin derivatives: biological activities, QSARs, and 3D-QSARs,” J Med Chem.; 14; Vol: 43(25): pp.4747-58, (2000). DOI: https://doi.org/10.1021/jm001028o

Zahradnik M. “The Producton and Application of Fluorescent Brightening Agents” John Wiley and Sons; New York, NY, USA: (1992).

Hesse S. and Kirsch G., “A rapid access to coumarin derivatives using Vilsmeier-Haack and Suzuki cross-coupling reactions”, Tetrahedron Lett, 43, 1213-1215, (2002). DOI: https://doi.org/10.1016/S0040-4039(01)02373-5

D. Patel, P. Kumari, and N. Patel; “Synthesis, characterization and biological evaluation of some thiazolidinone derivatives as antimicrobial agents,” J. Chem. Pharm. Res., 2(5): p. 84-91; (2010).

V.K. Gupta and V. Arya, “A review on potential diuretics of Indian medicinal plants” J. Chem. Pharm. Res., Vol: 3(1): pp. 613-620 (2011).

Y.S. Ranganath; V.H. Babu; G. Sandeep; R. Parameshwar, “Synthesis and evaluation of some novel furocoumarin derivatives for radical scavenging profile and cytotoxic studies,” J. Chem. Pharm. Res., Vol: 3, pp. 62-68 (2011).

L. A. Singer; N. P. Kong, Contribution from the Department of Chemistry, University of Chicago.: Vinyl Radicals.; J. American Chem. Soc.; Volume: 88 (22), 5213-5219, (1966). DOI: https://doi.org/10.1021/ja00974a033

S. Carboni., V. Malaguzzi, A. Marzili; “Ferulenol a new coumarin derivative from ferula communis,” Tetrahedron Lett.; Vol: 5 (38): pp.2783–2785 (1964). DOI: https://doi.org/10.1016/S0040-4039(00)71730-8

B. Chandrakantha, P. Shetty, V. Nambiyar, N. Isloor and A. M. Isloor, “Synthesis, Characterization and Biological Activity of Some New 1,3,4-Oxadiazole bearing 2-Fluoro4-methoxy Phenyl Moiety,” Eur. J. Med. Chem. Vol: 45 (3), pp. 1206-1210 (2010). DOI: https://doi.org/10.1016/j.ejmech.2009.11.046

T. Akhtar, S. Hameed, N. Al-Masoudi, R. Loddo and P. Colla, “In vitro antitumor and antiviral activities of new benzothiazole and 1,3,4-oxadiazole-2-thione derivatives,” Acta Pharmaceutica, Vol: 58(2), pp. 135–149, (2008). DOI: https://doi.org/10.2478/v10007-008-0007-2

M. J. Ahsan, J. Sharma, S. Bhatia, P. K. Goyal, K. Shankhala, and M. Didel, “Synthesis of 2, 5-disubstituted-1, 3, 4-oxadiazole analogs as novel anticancer and antimicrobial agents,” Letters in Drug Design and Discovery, Vol: 11(4), pp. 413–419, (2013). DOI: https://doi.org/10.2174/1570180810666131113211647

M. J. Ahsan, R. V. P. Singh, M. Singh et al., “Synthesis, anticancer and molecular docking studies of 2-(4-chlorophenyl)-5-aryl-1, 3, 4-oxadiazole analogues,” Medicinal Chemistry, Vol: 33(3), pp. 294–297, (2013).

S. M. Shaharyar; A. Mazumder; M.J. Ahsan, “Synthesis, characterization and anticancer evaluation of 2-(naphthalen-1-ylmethyl/naphthalen-2-yloxymethyl)-1-[5-(substituted phenyl)-[1,3,4]oxadiazol-2-ylmethyl]-1H-benzimidazole,” Arabian J. of Chemistry; Vol.7 (4), p. 418-424 (2014). DOI: https://doi.org/10.1016/j.arabjc.2013.02.001

M. J. Ahsan, J. G. Samy, H. Khalilullah et al., “Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents,” Bioorganic and Med. Chem. Letters, 21(24), pp. 7246–7250, (2011). DOI: https://doi.org/10.1016/j.bmcl.2011.10.057

M. J. Ahsan, J. G. Samy, C. B. Jain, K. R. Dutt, H. Khalilullah, and M. S. Nomani, “Discovery of novel antitubercular 1,5-dimethyl-2-phenyl-4-([5-(arylamino)- 1,3,4-oxadiazol-2-yl] methylamino)-1,2-dihydro-3H-pyrazol-3-one analogues,” Bioorganic and Med. Chem. Letters, Vol: 22 (2), pp. 969–972, (2012). DOI: https://doi.org/10.1016/j.bmcl.2011.12.014

M. A. Bakht, M. S. Yar, S. G. Abdel-Hamid, S. I. Al Qasoumi, and A. Samad, “Molecular properties prediction, synthesis and antimicrobial activity of some newer oxadiazole derivatives,” Eur. J. Med. Chem., Vol: 45 (12), pp. 5862–5869, (2010). DOI: https://doi.org/10.1016/j.ejmech.2010.07.069

M. Khan, T. Akhtar, N. A. Al-Masoudi, H. Stoeckli-Evans, and S. Hameed, “Synthesis, crystal structure and anti-HIV activity of 2-adamantyl/adamantylmethyl-5-aryl-1,3,4-oxadiazoles,” Med. Chem., Vol: 8(6), pp. 1190–1197, (2012). DOI: https://doi.org/10.2174/1573406411208061190

G. C. Ramaprasad, B. Kalluraya, B. Sunil Kumar, and S. Mallya, “Synthesis of new oxadiazole derivatives as anti-inflammatory, analgesic, and antimicrobial agents,” Med. Chem. Res., Vol:22 (11), pp. 5381–5389, (2013). DOI: https://doi.org/10.1007/s00044-012-0298-1

Y. Li, H. Zhu, K. Chen et al., “Synthesis, insecticidal activity, & structure-activity relationship (SAR) of anthranilic diamides analogs containing oxadiazole rings,” Org. and Biomole. Chem., Vol: 11(24), pp. 3979–3988, (2013). DOI: https://doi.org/10.1039/c3ob40345a

S. Borg, G. Estenne-Bouhtou; K. Luthman; I. Csoregh; U. Hacksell, W. Hesselink, “Synthesis of 1,2,4-oxadiazole, 1,3,4-oxadiazole and 1,2,4-triazole derived dipeptidomimetics,” J. of Org. Chem. Vol:60: pp. 3112-3120 (1995). DOI: https://doi.org/10.1021/jo00115a029

M. T. H. Khan, M.I. Choudhary, K.M. Khan, M. Rani, A. Rahman, “Structure–activity relationships of tyrosinase inhibitory combinatorial library of 2,5-disubstituted-1,3,4-oxadiazole analogues,” Bioorganic & Med. Chem.; Volume 13 (10), Pages 3385-3395 (2005). DOI: https://doi.org/10.1016/j.bmc.2005.03.012

A. Ramazani, A. Rezaei, “Novel one-pot, four-component condensation reaction: an efficient approach for the synthesis of 2, 5-disubstituted 1, 3, 4-oxadiazole derivate. by a Ugi-4CR/aza-wittig sequence,” Org. letters, Vol: 12(12), pp. 2852-2855 (2010). DOI: https://doi.org/10.1021/ol100931q

Mahesh V. Girgaonkar & S. G. Shirodkar, “Synthesis, characterization & antimicrobial activity of some new Schiff’s bases derived from 3-acetyl-4-hydroxy-2H-chromen-2-one and primary aromatic amines,” J. of Chem. and Pharm. Res., Vol: 4(1), pp. 260-264 (2012). View at www.jocpr.com

V. V. Kodgire, S. S. Chandole and S. G. Shirodkar, “Synthesis, characterization and antimicrobial study of some new schiff’s bases derived from 3-acetyl-4-hydroxy-2H-chromen-2-one,” J. of Chem. &Pharm. Res., Vol: 7(4):199-203, (2015). View at www.jocpr.com

V. V. Kodgire, S. B. Patwari, S. S. Chandole and S. G. Shirodkar; “Characterization and antimicrobial study of some new N'-(1-(4-hydroxy-2- oxo-2H-chromen-3-yl) ethylidene) arylhydrazide synthesized from 3-acetyl-4- hydroxy-2H-chromen-2-one,” J. of Chem. & Pharm. Res., Vol: 7(12):515-518 (2015). View at www.jocpr.com

M. S. Mote, S. B. Patwari and S. P. Pachling, “Synthesis, characterization and antimicrobial activity of some new Schiff’s bases of 3-acetyl-4-hydroxy-2H-chromen-2-one and amino pyridines,” J. of Chem. & Pharm. Res., 5(5):267-270, (2013). View at www.jocpr.com

R.L. Jadhav; H.U. Joshi; S.B. Ubale; “Synthesis, characterization and biological activities of some novel Schiff bases derived from 3-acetyl-4-hydroxy-2H-chromen-2-one and 5-(4-substituted phenyl)-1,3,4-thiadiazol-2-amine,” J. of Inter. dis. Cycle Res. Vol. XIII, (X), (Oct-2021).

R.L. Jadhav; H.U. Joshi; S.B. Ubale; “Synthesis, characterization and biological activities of some novel Schiff bases derived from 3-acetyl-4-hydroxy-2H-chromen-2-one and 2- amino 5-(4-halo substituted phenyl)-1, 3, 4-thiadiazole” The Inter. J. of analytical and expt. modal analysis Vol. XIII, (XI), (Nov. 2021).

a) J. Klosa, “Preparation of 4-hydroxycoumarin ketones with the help of phosphorous oxychloride,” Arch Pharm Ber Dtsch Pharm Ges, Vol: 289(2), pp. 104-10 (1956) b) J. F. Stephen, & E. Marcus, “Concerning the postulated rearrangement of 4-acyloxy-and 4-aroyloxycoumarins to 5-acyl-and 5-aroyl-4-hydroxycoumarins,” J. Org. Chem., 34(9), 2764-2766, (1969). DOI: https://doi.org/10.1021/jo01261a063

E. E. Salama; “Synthesis of new 2-amino-1,3,4-oxadiazole derivatives with anti-salmonella typhi activity evaluation,” BMC Chemistry, Vol: 14, Article no.: 30; pp.1-8 (2020). DOI: https://doi.org/10.1186/s13065-020-00682-6

I. A. Gad El-Karim, M. S. Amine, A. A. Mahmoud, A. S. Gouda; Fatty Acids in Heterocyclic Synthesis. Part XIV: “Synthesis of Surface-Active Agents from Some Novel Class of Oxadiazole, Thiadiazole & Triazole Derivatives Having Microbio. Activities,” J. of surfactant & deterg.; Vol.17(3), pp.509-523, (2014). https://doi.org/10.1007/s11743-013-1530-9 DOI: https://doi.org/10.1007/s11743-013-1530-9

R. J. Nahi & Z. I. Kuwait, “Synthesis, Characterization & Thermal Behavior Study of New1,2,3-Triazole Derivatives Containing 1,3,4-Oxadiazole Ring,” Orient. J. of Chem. Vol. 35, No. (1): pp. 416-422, (2019)https://www.orientjchem.org/ DOI: https://doi.org/10.13005/ojc/350153

R. Cruickshank, J. Duguid, B. Marmion, and R. Swain; “Medical Microbiology”:12th Edition, Churchill Livingstone Edinburgh, London and New York (1975).

V. Mutalk. and M.A. Phaniband, “Synthesis, characterization, fluorescent and antimicrobial properties of new Lanthanide (III) complexes derived from coumarin Schiff base,” J. Chem. Pharm. Res, 3(2), 313, (2011).

Downloads

Published

16-03-2024

Issue

Section

Research Articles

How to Cite

Synthesis, Characterization, and Biological Activities of Novel Schiff Bases Derived from 3-acetyl-4-hydroxy-2h-chromen-2-one and 5-(4-ethoxy/ halo substituted phenyl)-1,3,4-oxadiazol-2-amine . (2024). International Journal of Scientific Research in Science and Technology, 11(2), 591-600. https://doi.org/10.32628/IJSRST524112100

Similar Articles

1-10 of 41

You may also start an advanced similarity search for this article.