Diamond-Like Carbon (DLC) Coatings : Classification, Properties, and Applications
DOI:
https://doi.org/10.32628/IJSRST5241131Keywords:
Diamond Like Carbon, Friction, Wear, Hydrogenated, Hydrogen-Free DLCs, Graphitization, Conventional Lubricant Additives, Vacuum Chamber, Dehydrogenating, Influence of Dry and Lubricated Conditions, Water Lubrication, Additive Concentration, DLC Films, IOT ApplicationAbstract
This paper presents the most recent and important research trends on the friction and wear properties of diamond like carbon (DLC) coatings deposited on different types of materials. For this the invention, methods, techniques, and design related to this area are discussed. The different trends of tribological properties of materials under different operating conditions are observed. In this article, an attempt is made to provide an opportunity for the future researchers to identify the recent trend of these areas. It is expected that the applications of these results will contribute to the improvement of different concerned mechanical processes. This review article also includes some patents relevant to the method of producing a DLC film.
Downloads
References
Robertson, J. Diamond-Like Amorphous Carbon. Mater. Sci. Eng. R. Rep. 2002, 37, 129–281. DOI: https://doi.org/10.1016/S0927-796X(02)00005-0
Kržan, B.; Novotny-Farkas, F.; Vižintin, J. Tribological behavior of tungsten-doped DLC coating under oil lubrication. Tribol. Int. 2009, 42, 229–235. DOI: https://doi.org/10.1016/j.triboint.2008.06.011
Evtukh, A.A.; Litovchenko, V.G.; Litvin, Y.M.; Fedin, D.V.; Dzyan, O.S.; Pedchenko, Y.N.; Chakhovskoi, A.G.; Felter, T.E. Silicon Doped Diamond-Like C Films as a Coating for Improvement of Electron Field Emission. In Proceedings of the 14th International Vacuum Microelectronics Conference, Davis, CA, USA, 12–16 August 2001; p. 295.
Louis, B. Amorphous Diamond, a New Super-Hard Form of C Created under Ultrahigh Pressure; Science Daily: Rockville, MD, USA, 2011.
Treutler, C.P.O. Industrial use of plasma-deposited coatings for components of automotive fuel injection systems. Surf. Coat. Technol. 2005, 200, 1969–1975. DOI: https://doi.org/10.1016/j.surfcoat.2005.08.012
Van Der Kolk, G.J. Tribology of Diamond-Like C Films, Springer Science + Business Media; Donnet, C., Erdemir, A., Eds.; LLC: New York, NY, USA, 2008; pp. 484–493. DOI: https://doi.org/10.1007/978-0-387-49891-1_19
Klaus, B.; Dieter, H. History of Diamond-Like C Films—From First Experiments to Worldwide Applications. Surface Coat. Technol. 2014, 242, 214–225. DOI: https://doi.org/10.1016/j.surfcoat.2014.01.031
Goglia, P.; Berkowitz, J.; Hoehn, J.; Xidis, A. Diamond-like carbon applications in high density hard disc recording heads. Diam. Relat. Mater. 2001, 10, 271–277. DOI: https://doi.org/10.1016/S0925-9635(00)00589-6
Ferrari, A. Diamond-like carbon for magnetic storage disks. Surf. Coat. Technol. 2004, 180, 180–181. DOI: https://doi.org/10.1016/S0257-8972(03)01189-7
Schmellenmeier, H. Die Beeinflussung von festen Oberflachen durch eine ionisierte. Exp. Tech. Phys. 1953, 1, 49–68.
Schmellenmeier, H. Carbon layers with diamond structure. Phys. Chem. 1956, 205, 349–360. DOI: https://doi.org/10.1515/zpch-1956-20541
König, H.; Helwig, G.Z. Thin Layers Formed from Hydrocarbons by Electron or Ion Bombardment. Physik 1951, 129, 491–503. DOI: https://doi.org/10.1007/BF01330048
Heisen, A. Über die Bildung dünner Kohleschichten in einer in Benzolatmosphäre brennenden Glimmentladung. Ann. Phys. 1958, 457, 23–35. DOI: https://doi.org/10.1002/andp.19584570104
Heisen, A. Colour vision in Man and Animals. Optik 1961, 18, 59–68.
Aisenberg, S.; Chabot, R. Ion-beam deposition of thin films of diamondlike carbon. J. Appl. Phys. 1971, 42, 2953–2958. DOI: https://doi.org/10.1063/1.1660654
Aisenberg, S.; Chabot, R. Physics of ion plating and ion beam deposition. J. Vac. Sci. Technol. 1973, 10, 104–107. DOI: https://doi.org/10.1116/1.1317915
Spencer, E.G.; Schmidt, P.H.; Joy, D.C.; Sansalone, F. Ion-beam-deposited polycrystalline diamondlike films. J. Appl. Phys. Lett. 1976, 29, 118–120. DOI: https://doi.org/10.1063/1.88963
Whitmell, D.S.; Williamson, R. The deposition of hard surface layers by hydrocarbon cracking in a glow discharge. Thin Solid Films 1976, 35, 255–261. DOI: https://doi.org/10.1016/0040-6090(76)90263-7
Holland, L. Some characteristics and uses of low-pressure plasmas in materials science. J. Vac. Sci. Technol. 1977, 14, 5–15. DOI: https://doi.org/10.1116/1.569159
Bewilogua, K.; Wagner, D. The effect of secondary electrons in the ion plating deposition of amorphous hydrogenated carbon (aC: H) films. Vacuum 1991, 42, 473–476. DOI: https://doi.org/10.1016/0042-207X(91)90019-F
Allen, S.M.; Thomas, E.L. The Structure of Materials. Wiley: New York, NY, USA, 1998; p. 2.
Carbon Based Films-Classification and Designations ISO 20523:2017; The International Organization for Standardization: Geneva, Switzerland, 2017.
Ohgoe, Y.; Hirakuri, K.K.; Saitoh, H.; Nakahigashi, T.; Ohtake, N.; Hirata, A.; Kanda, K.; Hiratsuka, M.; Fukui, Y. Classification of DLC films in terms of biological response. Surf. Coat. Technol. 2012, 207, 350–354. DOI: https://doi.org/10.1016/j.surfcoat.2012.07.018
Hiratsuka, M.; Nakamori, H.; Kogo, Y.; Sakurai, M.; Ohtake, N.; Saitoh, H. Correlation between Optical Properties and Hardness of Diamond-Like Carbon Films. Solid Mech. Mater. Eng. 2013, 7, 187–198. DOI: https://doi.org/10.1299/jmmp.7.187
Jacob, W.; Moller, W. On the structure of thin hydrocarbon films. App. Phys. Lett. 1993, 63, 1771–1773. DOI: https://doi.org/10.1063/1.110683
Fallon, P.J.; Veerasamy, V.S.; Davis, C.A.; Robertson, J.; Amaratunga, G.A.J.; Milne, W.I.; Koskinen, J. Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy. Phys. Rev. B 1993, 48, 4777. DOI: https://doi.org/10.1103/PhysRevB.48.4777
Polo, M.C.; Andujar, J.L.; Robertson, J.; Milne, W.I. Preparation of tetrahedral amorphous carbon films by filtered cathodic vacuum arc deposition. Diam. Relat. Mater. 2000, 9, 663–667. DOI: https://doi.org/10.1016/S0925-9635(99)00339-8
Lifshitz, Y.; Lempert, G.D.; Grossman, E.; Avigal, I.; Uzan-Saguy, C.; Kalish, R.; Kulik, J.; Marton, D.; Rabalais, J.W. Growth mechanisms of DLC films from C+ ions: Experimental studies. Diam. Relat. Mater. 1995, 4, 318–323. DOI: https://doi.org/10.1016/0925-9635(94)05205-0
Merkulov, V.I.; Lowndes, D.H.; Jellison, G.E.; Puretzky, A.A.; Geohegan, D.B. Field emission studies of smooth and nanostructured carbon films. App. Phys. Lett. 1999, 73, 1228. DOI: https://doi.org/10.1063/1.124650
Koidl, C.; Wagner, B.; Dischler, J.; Wagner, M. Plasma deposition, properties and structure of amorphous hydrogenated carbon films. Mat. Sci. Forum. 1990, 52, 41–70. DOI: https://doi.org/10.4028/www.scientific.net/MSF.52-53.41
Zou, J.W.; Reichelt, K.; Schmidt, K.; Dischler, B. The deposition and study of hard carbon films. J. App. Phys. 1989, 65, 3914–3918. DOI: https://doi.org/10.1063/1.343355
Kessels, W.M.M.; Gielen, J.W.A.M.; van de Sanden, M.C.M.; van Ijzendoorn, L.J.; Schram, D.C. A model for the deposition of aC: H using an expanding thermal arc. Surf. Coat. Technol. 1998, 98, 1584–1589. DOI: https://doi.org/10.1016/S0257-8972(97)00358-7
Schwarz-Selinger, T.; Von Keudell, A.; Jacob, W. Plasma chemical vapor deposition of hydrocarbon films: The influence of hydrocarbon source gas on the film properties. J. App. Phys. 1999, 86, 3968. DOI: https://doi.org/10.1063/1.371318
Tamor, M.A.; Vassell, W.C.; Carduner, K.R. Atomic constraint in hydrogenated “diamond-like” carbon. App. Phys. Lett. 1991, 58, 592–594. DOI: https://doi.org/10.1063/1.104597
Donnet, C.; Fontaine, J.; Lefebvre, F.; Grill, A.; Patel, V.; Jahnes, C. Solid state 13C and 1H nuclear magnetic resonance investigations of hydrogenated amorphous carbon. J. App. Phys. 1999, 85, 3264–3270. DOI: https://doi.org/10.1063/1.369669
Weiler, M.; Sattel, S.; Giessen, T.; Jung, K.; Ehrhardt, H.; Veerasamy, V.S.; Robertson, J. Preparation and properties of highly tetrahedral hydrogenated amorphous carbon. Phys. Rev. B 1996, 53, 1594. DOI: https://doi.org/10.1103/PhysRevB.53.1594
Weiler, M.; Lang, K.; Li, E.; Robertson, J. Deposition of tetrahedral hydrogenated amorphous carbon using a novel electron cyclotron wave resonance reactor. App. Phys. Lett. 1998, 72, 1314–1316. DOI: https://doi.org/10.1063/1.121069
Gao, J.; Wang, Y.; Wu, H.; Liu, X.; Wang, L.; Yu, Q.; Li, A.; Wang, H.; Song, C.; Gao, Z.; et al. Construction Of Sp3/Sp2C Interface in 3D N-Doped NanoC For The O Reduction Reaction. Angew Chem. Int. Ed. 2019, 58, 15089. DOI: https://doi.org/10.1002/anie.201907915
Wu, Z.; Zhang, X.; Xu, D.; Ge, J. Construction of Nitrogen-Doped C Nanosheets for Efficient and Stable O Reduction Electrocatalysis. J. Electron. Mater. 2021, 50, 1349–1357. DOI: https://doi.org/10.1007/s11664-020-08660-3
Jiangwei, C.; Longlong, H.; Chang, Y.; Yiwang, D.; Chun, Y.; Jieshan, Q. Highly efficient & economic synthesis of CoS1.097/nitrogen-doped C for enhanced triiodide reduction. Carbon 2021, 174, 445–450. DOI: https://doi.org/10.1016/j.carbon.2020.12.057
Xia, Y.; Zhang, Z.; Qin, F.; Gao, J.; Wang, H.; Xu, Z.; Tan, X.; Liu, X.; Li, X.; Yin, Z. Electrocatalytic activity enhancement of N, P-doped C nanosheets derived from polymerizable ionic liquids. J. Appl. Electrochem. 2021, 51, 669–679. DOI: https://doi.org/10.1007/s10800-020-01506-0
Yu, X.; Lu, X.; Qin, G.; Li, H.; Li, Y.; Yang, L.; Song, Z.; An, Y.; Yan, Y. Large-scale synthesis of flexible TiO2/N-doped C nanofibres. A highly efficient all-day-active photocatalyst with electron storage capacity. Ceram. Int. 2020, 46, 12538–12547. DOI: https://doi.org/10.1016/j.ceramint.2020.02.016
Yu, X.; Lai, S.; Xin, S.; Chen, S.; Zhang, X.; She, X.; Zhan, T.; Zhao, X.; Yang, D. Coupling of Iron Phthalocyanine at C Defect Site via π-π Stacking for Enhanced O Reduction Reaction. Appl. Catal. B Environ. 2020, 119437. DOI: https://doi.org/10.1016/j.apcatb.2020.119437
Lu, Z.; Gao, D.; Yi, D.; Yang, Y.; Wang, X.; Yao, J. sp2/sp3 Hybridized Carbon as an Anode with Extra Li-Ion Storage Capacity. Construction and Origin. ACS Central Sci. 2020, 6, 1451–1459. DOI: https://doi.org/10.1021/acscentsci.0c00593
Wang, Y.; Suo, B.; Shi, Y.; Yuan, H.; Zhu, C.; Chen, Y. General Fabrication of 3D Hierarchically Structured Bamboo-like Nitrogen-Doped C Nanotube Arrays on 1D Nitrogen-Doped C Skeletons for Highly Efficient Electromagnetic Wave Energy Attenuation. ACS Appl. Mat. Interfaces 2020, 12, 40691–40701. DOI: https://doi.org/10.1021/acsami.0c12413
Muguruma, T.; Iijima, M.; Kawaguchi, M.; Mizoguchi, I. Effects of sp2/sp3 Ratio and Hydrogen Content on In Vitro Bending and Frictional Performance of DLC-Coated Orthodontic Stainless Steels. Coatings 2018, 8, 199. DOI: https://doi.org/10.3390/coatings8060199
Yimin, L.; Guojun, H.; Sai, W.; Chaowei, M.; Shangfang, W.; Fangtao, T.; Wei, L.; Haiyuan, C.; Yong, C. A Review on Diamond-like C Films Grown by Pulsed Laser Deposition. Appl. Surf. Sci. 2020, 5, 148573.
Zhong, W.X.; Zhao, X.R.; Qin, J.Y.; Yang, J. An Active Hybrid Electrocatalyst with Synergized Pyridinic Nitrogen - Cobalt and O Vacancies for Bifunctional O Reduction and Evolution. Chin. J. Chem. 2021, 39, 655–660. DOI: https://doi.org/10.1002/cjoc.202000445
Lemoine, P.; Quinn, J.P.; Maguire, P.D.; McLaughlin, J.A.D. Measuring the thickness of ultra-thin diamond-like carbon films. Carbon 2006, 44, 2617. DOI: https://doi.org/10.1016/j.carbon.2006.04.029
Sarakinos, K.; Braun, A.; Zilkens, C.; Mra, Z.S.; Schneider, J.M.; Zoubos, H.; Patsalas, P. Exploring the potential of high power impulse magnetron sputtering for growth of diamond-like carbon films. Surf. Coat. Technol. 2012, 206, 2706–2710. DOI: https://doi.org/10.1016/j.surfcoat.2011.11.032
Chhowalla, M.; Robertson, J.; Chen, C.W.; Silva, S.R.P.; Amaratunga, A.G.A. Influence of ion energy and substrate temperature on the optical and electronic properties of tetrahedral amorphous carbon (ta-C) films. J. Appl. Phys. 1997, 81, 139–145. DOI: https://doi.org/10.1063/1.364000
Kamata, K.; Inoue, T.; Sugai, K.; Saitoh, H. Maruyama. J. Appl. Phys. 1995, 78, 1394. DOI: https://doi.org/10.1063/1.360321
Ferrari, A.C.; Kleinsorge, B.; Adamopoulos, G.; Robertson, J.; Milne, W.I.; Stolojan, V.; Brown, L.M.; Libassi, A.K.A.B. Determination of bonding in amorphous carbons by electron energy loss spectroscopy, Raman scattering and X-ray reflectivity. J. Non-Cryst. Solids. 2000, 765, 266–269. DOI: https://doi.org/10.1016/S0022-3093(00)00035-1
Libassi, A.C.; Ferrari, V.; Stolojan, B.K.; Tanner, J.; Robertson, L.; Brown, M. Density, sp3 content and internal layering of DLC films by X-ray reflectivity and electron energy loss spectroscopy. Diam. Relat. Mater. 2000, 9, 771. DOI: https://doi.org/10.1016/S0925-9635(99)00233-2
Tan, M.; Zhu, J.; Liu, A.; Jia, Z.; Han, J. Effects of mass density on the micro hardness and modulus of tetrahedral amorphous carbon films. Mater. Lett. 2007, 61, 4647. DOI: https://doi.org/10.1016/j.matlet.2007.02.073
Chua, H.C.; Teo, K.B.K.; Tsai, T.H.; Milne, W.I.; Sheeja, D.; Tay, B.K.D. A Correlation of surface, mechanical and micropropertiesof tetrahedral amorphous carbon films deposited under different magnetic confinement conditions. Schneider. Appl. Surf. Sci. 2004, 221, 455. DOI: https://doi.org/10.1016/j.apsusc.2003.07.002
Pastorelli, R.; Ferrari, A.C.; Beghi, M.G.; Bottani, C.E.; Robertson, J. Elastic constants of ultrathin diamond-like carbon films. Diamond Relat. Mater. 2000, 9, 825. DOI: https://doi.org/10.1016/S0925-9635(99)00245-9
Paik, N. High density DLC films prepared using a magnetron sputter type negative ion source. Diam. Relat. Mater. 2005, 14, 196. DOI: https://doi.org/10.1016/j.diamond.2004.11.005
Aijaz, A.; Sarakinos, K.; Lundin, D.; Brenning, N.; Helmersson, U. A strategy for increased carbon ionization in magnetron sputtering discharges. Diamond Relat. Mater. 2012, 23, 1. DOI: https://doi.org/10.1016/j.diamond.2011.12.043
Logothetidis, S.; Patsalas, P.; Gioti, M.; Galdikas, A.; Pranevicius, L. Growth kinetics of sputtered amorphous carbon thin films composition studies and phenomenological model. Thin Solid Films 2000, 376, 56. DOI: https://doi.org/10.1016/S0040-6090(00)01402-4
Ferrari, A.C.; Libassi, A.; Tanner, B.K.; Stolojan, V.; Yuan, J.; Brown, L.M.; Rodil, S.E.; Robertson, B.K.A.J. Density SP3 fraction, and cross sectional structure of amorphous carbon films determined by X-ray reflectivity and electron energy-loss spectroscopy. Phys. Rev. B 2000, 62, 11089. DOI: https://doi.org/10.1103/PhysRevB.62.11089
Ferrari, C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095. DOI: https://doi.org/10.1103/PhysRevB.61.14095
Casiraghi, A.; Ferrari, C.; Robertson, J. Raman spectroscopy of hydrogenated amorphous carbon. Phys. Rev. B 2005, 72, 085401. DOI: https://doi.org/10.1103/PhysRevB.72.085401
Donnet, J.R.C.; Erdemir, A. (Eds.) Tribology of Diamond-Like C Films. Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2008; pp. 13–24. DOI: https://doi.org/10.1007/978-0-387-49891-1
Tian, J.; Zhang, Q.; Zhou, Q.; Yoon, S.F.; Ahn, J.; Wang, S.G.; Li, J.Q.; Yang, A.D.J. Study of well adherent DLC films deposited on piezoelectric LiTO3 substrate. Appl. Surf. Sci. 2005, 239, 255. DOI: https://doi.org/10.1016/j.apsusc.2004.05.288
Robertson, D.J. Deposition mechanisms for promoting SP3 bonding in diamond-like carbon. Relat. Mater. 1993, 3, 361. DOI: https://doi.org/10.1016/0925-9635(93)90262-Z
Hatada, R.; Flege, S.; Ashraf, M.N.; Timmermann, A.; Schmid, C.; Ensinger, W. The Influence of Preparation Conditions on the Structural Properties and Hardness of Diamond-Like C Films, Prepared by Plasma Source Ion Implantation. Coatings 2020, 10, 360. DOI: https://doi.org/10.3390/coatings10040360
Ito, H.; Yamamoto, K. Mechanical and tribological properties of DLC films for sliding parts. Kobelco Technol. Rev. 2017, 35, 55–60. Available online: https://www.kobelco.co.jp/english/ktr/ktr_35.html (accessed on 1 December 2020).
Písarík, P.; Jelínek, M.; Kocourek, T.; Remsa, J.; Zemek, J.; Lukeš, J.; Šepitka, J. Influence of diamond and graphite bonds on mechanical properties of DLC thin films. J. Phys. Conf. Ser. 2015, 594, 012008. DOI: https://doi.org/10.1088/1742-6596/594/1/012008
Johnson, J.A.; Woodford, J.B.; Chen, X.; Andersson, J.; Erdemir, A.; Fenske, G.R. Insights into ‘near frictionless carbon films’. Appl. Phys. 2004, 95, 7765. DOI: https://doi.org/10.1063/1.1739287
Sanchez-Lopez, J.C.; Erdemir, A.C.; Rojas, A.T. Friction-induced structural transformations of diamond like carbon coatings under various atmospheres. Surf. Coat. Technol. 2003, 163, 444. DOI: https://doi.org/10.1016/S0257-8972(02)00641-2
Aurang, P.; Demircioglu, O.; Es, F.; Turan, R.; Unalan, H.E. ZnO Nanorods as Antireflective Coatings for Industrial-Scale Single-Crystalline Silicon Solar Cells. J. Am. Ceram. Soc. 2013, 96, 1253–1257. DOI: https://doi.org/10.1111/jace.12200
Gao, G.T.; Mikulski, P.T.; Harrison, J.A. Molecular scale tribology of amorphous carbon coatings: Effects of film thickness, adhesion and long range interaction. J. Am. Chem. Soc. 2002, 124, 7202. DOI: https://doi.org/10.1021/ja0178618
Gao, G.T.; Mikulski, P.T.; Chateauneuf, G.M.; Harrison, J.A. The effects of film structure and surface hydrogen on the properties of amorphous carbon films. J. Phys. Chem. B 2003, 107, 11082. DOI: https://doi.org/10.1021/jp034544+
Bilek, M.M.M.; Mckenzie, D.R.; Moeller, W. Use of low energy and high frequency PBII during thin film deposition to achieve relief of intrinsic stress and microstructural changes. Surf. Coat. Technol. 2004, 186, 21. DOI: https://doi.org/10.1016/j.surfcoat.2004.04.051
Bilek, M.M.; Verdon, M.; Ryves, L.; Oates, T.W.; Ha, C.T.; McKenzie, D.R. A model for stress generation and stress relief mechanisms applied to as deposited filtered cathodic vacuum arc amorphous carbon films. Thin Solid Films 2005, 482, 69. DOI: https://doi.org/10.1016/j.tsf.2004.11.159
Memming, R.; Tolle, H.J.; Wierenga, P.E. Properties of polymeric layers of hydrogenated amorphous carbon produced by a plasma-activated chemical vapor deposition process II: Tribological and mechanical properties. Thin Solid Films 1986, 143, 31. DOI: https://doi.org/10.1016/0040-6090(86)90144-6
Klages, P.; Memming, R. Microstructure and physical properties of metal-containing hydrogenated carbon films. Mater. Sci. Forum. 1990, 52, 609. DOI: https://doi.org/10.4028/www.scientific.net/MSF.52-53.609
Available online: Http://Www.Ist.Fraunhofer.De/English/C-Products/Tab/Complete.Html (accessed on 1 December 2020).
Muhl, S.; Mendez, J. A review of preparation of carbon nitride films. Relat. Mater. 1999, 8, 1809–1830. DOI: https://doi.org/10.1016/S0925-9635(99)00142-9
Oguri, K.; Arai, T. Tribological properties and characterization of diamond-like carbon coatings with silicon prepared by plasma-assisted chemical vapour deposition. Surf. Coat. Technol. 1991, 47, 710. DOI: https://doi.org/10.1016/0257-8972(91)90344-V
Zhang, S.; Bui, X.L.; Zeng, X.L.; Li, X.M. Towards high adherent and tough aC coatings. Thin Solid Films 2005, 482, 138. DOI: https://doi.org/10.1016/j.tsf.2004.11.165
Kaczorowski, W.; Świątek, H.; Łuczak, K.; Głuszek, M.; Cłapa, M. Impact of Plasma Pre-Treatment on the Tribological Properties of DLC Coatings on PDMS Substrates. Materials 2021, 14, 433. DOI: https://doi.org/10.3390/ma14020433
Wang, Y.; Wang, Y.; Kang, J.; Ma, G.; Zhu, L.; Wang, H.; Fu, Z.; Huang, H.; Yue, W. Tribological Properties of Ti-Doped Diamond Like C Coatings Under Boundary Lubrication with ZDDP. J. Tribol. ASME. 2021, 143, 091901. DOI: https://doi.org/10.1115/1.4049373
Fiaschi, G.; Rota, A.; Ballestrazzi, A.; Marchetti, D.; Vezzalini, E.; Sergio, V.A. Chemical, Mechanical, and Tribological Analysis of DLC Coatings Deposited by Magnetron Sputtering. Lubricant 2019, 7, 38. DOI: https://doi.org/10.3390/lubricants7040038
Field, J.E. The Properties of Diamond; Academic Press Inc.: New York, NY, USA, 1979.
Outka, A.; Hsu, W.L.; Boehme, D.R.; Yang, N.Y.C.; Ottesen, D.K.; Johnsen, H.A.; Headley, T.J.; Clift, W.M. Sandia Report Sand94–8219, Uc-404; Unlimited Release Printed February; Sandia National Laboratories: Albuquerque, NM, USA; Livermore, CA, USA, 1994.
Hoffman, R.W. The Mechanical Properties of Thin Condensed Films. In Physics of Thin Films; Hass, G., Thun, R.E., Eds.; Academic: New York, NY, USA, 1966; p. 266.
Chopra, K.L. Thin Film Phenomena; Mcgraw-Hill: New York, NY, USA, 1969.
Field, J.E. Strength and Fracture Properties of Diamond. In The Properties of Diamond; Field, J.E., Ed.; Academic: New York, NY, USA, 1979; p. 281.
Gray, E. (Ed.) American Institute of Physics Handbook, 3rd ed.; Mcgraw-Hill: New York, NY, USA, 1972.
Campbell, S. Mechanical Properties of Thin Films. In Handbook of Thin Films Technology, Maissel, L.I.; Glang, R., Ed.; Mcgraw-Hill: New York, NY, USA, 1970; p. 12.
Weast, R.C. (Ed.) Handbook of Chemistry and Physics, 70th ed.; CRC Press: Boca Raton, FL, USA, 1989.
Holleck, H. Material selection for hard coatings. J. Vac. Sci. Technol. A 1986, 42661.
Gere, J.M.; Timoshenko, S.P. Mechanics of Materials, 3rd ed.; Pws-Kent: Boston, MA, USA, 1990. DOI: https://doi.org/10.1007/978-1-4899-3124-5
Jaccodine, R.J.; Schlegel, W.A. Measurement of strains at SiO2 interface. J. Appl. Phys. 1966, 372429. DOI: https://doi.org/10.1063/1.1708831
Enke, K. Some new results on the fabrication of and the mechanical, electrical and optical properties of i-carbons layers. Thin Solid Films 1981, 80227. DOI: https://doi.org/10.1016/0040-6090(81)90226-1
Matuda, N.; Baba, S.; Kinbara, A. Internal stress, young;s modulus and adhesion energy of carbon films on glass substrate. Thin Solid Films 1981, 8, 1301. DOI: https://doi.org/10.1016/0040-6090(81)90514-9
Zelez, J. Low stress carbon like carbon films. J. Vac. Sci. Technol. A 1983, 1, 305. DOI: https://doi.org/10.1116/1.572119
Gille, B.R. Buckling instability and adhesion of carbon layers. Thin Solids Films 1984, 120, 109. DOI: https://doi.org/10.1016/0040-6090(84)90365-1
Outka, D.A.; Hsu, W.L.; Phillips, K.; Boehme, D.R.; Yang, N.Y.; Ottesen, D.K.; Johnsen, H.A.; Clift, W.M.; Headley, T.J. Compilation of diamond like carbon properties for barriers and hard coatings. Sandia 1994, 10151476. DOI: https://doi.org/10.2172/10151476
Nir, D. Intrinsic stress in diamond-like carbon films and its dependence on deposition parameters. Thin Solid Films 1987, 146, 27. DOI: https://doi.org/10.1016/0040-6090(87)90337-3
Kikuchi, A.; Baba, S.; Kinbara, A. Measurement of the adhesion of silver films to glass substrate. Thin Solid Films 1985, 343–349. DOI: https://doi.org/10.1016/0040-6090(85)90285-8
Electrochemical Society; Dielectrics, Insulation Division, Electrochemical Society. High Temperature Materials Division; High Temperature Materials Division. Proceedings of the… International Symposium on Diamond and Diamond-like Films. Electrochem. Soc. 1989, 12–89.
Ham, M.; Lou, K.A. Diamond like carbon films grown by a large scale direct current plasma-chemical vapor deposition reactor: System design, film characteristics and applications. J. Vac. Sci. Technol. A 1990, 8, 2143. DOI: https://doi.org/10.1116/1.577030
Berry, B.S.; Pritchet, W.C.; Cuomo, J.J.; Guarnieri, C.R.; Whitehair, S.J. Internal stress and elasticity of synthetic diamond films. Appl. Phys. Lett. 1990, 57, 302. DOI: https://doi.org/10.1063/1.103721
Specht, E.D.; Clausing, R.E.; Heatherly, L. Measurement of crystalline strain and orientation in diamond films grown by chemical vapor deposition. J. Mater. Res. 1990, 5, 2351. DOI: https://doi.org/10.1557/JMR.1990.2351
Clausing, R.E.; Heatherly, L.; Specht, E.D.; More, K.L.; Begun, G.M. Growth mechanism, film morphology, texture and stresses for three types of HFCVD diamond film growth. Carbon 1990, 28, 762. DOI: https://doi.org/10.1016/0008-6223(90)90277-6
Angus, J.C.; Koidl, P.; Domitz, A.S. C Thin Films. In Plasma Deposited Thin Films; Mort, J., Jansen, F., Eds.; CRC Press: Boca Raton, FL, USA, 1986; p. 89. DOI: https://doi.org/10.1201/9781351075817-4
Tsai, H.-C.; Bogy, D.B.J. Charecterization of diamond like carbon films and their applications as overcoats on thin film media for magnetic recording. Vac. Sci. Technol. A 1987, 5, 3287. DOI: https://doi.org/10.1116/1.574188
Nir, D. Stress relief forms diamond-like carbon thin films under internal compressive stress. Thin Solid Films 1984, 112–141. DOI: https://doi.org/10.1016/0040-6090(84)90500-5
Anttila, A.; Koskinen, J.; Lappalainen, R.; Hirvonen, J.P.; Stone, D.; Paszkiet, C. Comparison of diamond like coatings with C+ and various hydrocarbon ion beams. Appl. Phys. Lett. 1987, 50, 132. DOI: https://doi.org/10.1063/1.97693
Shrnivashan, N.; Bhaskar, L.K.; Kumar, R.; Bhargeti, S. Residual Stress Gradient and Relaxation Upon Fatigue Deformation of Diamond-Like C Coated Aluminum Alloy in Air and Methanol Environments. Mat. Design 2018, 160, 303–312. DOI: https://doi.org/10.1016/j.matdes.2018.09.022
Ager, J.W.; Veirs, D.K.; Rosenblatt, G.M. Spatially resolved Raman studies of diamond films grown by chemical vapor deposition. Phys. Rev. B 1991, 6491. DOI: https://doi.org/10.1103/PhysRevB.43.6491
Stoney, G.G. The tension of metallic films deposited by electrolysis. Proc. Roy. Soc. 1909, 32, 172. DOI: https://doi.org/10.1098/rspa.1909.0021
Spear, K.E. Diamond ceramic coatings of the future. J. Am. Ceram. Soc. 1989, 72, 171. DOI: https://doi.org/10.1111/j.1151-2916.1989.tb06099.x
Hull, T.; Colligon, J.S. Measurement of thin film adhesion. Vacuum 1987, 37, 327. DOI: https://doi.org/10.1016/0042-207X(87)90018-2
Zhang, B.; Zhou, L. Effect of sandblasting on adhesion strength of diamond coatings. Thin Solid Films 1997, 307, 21–28. DOI: https://doi.org/10.1016/S0040-6090(97)00297-6
Halpern, J. Determination and significance of transition metal-alkyl bond dissociation energy. Acc. Chem. Res. 1982, 15, 238–244. DOI: https://doi.org/10.1021/ar00080a002
Rossini, F.D. Selected Values of Chemical Thermodynamic Properties, National Bureau of Standards Circular 500; US Government Printing Office: Washington, DC, USA, 1952.
Shaffer, P.T.B. Plenum Press Handbooks of High-Temperature Materials; Plenum: New York, NY, USA, 1964. DOI: https://doi.org/10.1007/978-1-4899-6405-2
Storms, K. Tile Refractory Carbides; Academic: New York, NY, USA, 1967. DOI: https://doi.org/10.1016/B978-1-4832-3070-2.50004-5
Schick, H.L. Thermodynamics of Certain Refractory Compounds; Academic: New York, NY, USA, 1966.
Mirtich, M.J.; Nir, D.; Swec, D.; Banks, B. The use of intermediate layers to improve the adherence of diamond like carbon films on Zns and ZnSe. J. Vac. Sci. Technol. A 1986, 4, 2680. DOI: https://doi.org/10.1116/1.573704
Swec, D.M.; Mirtich, M.J.; Nir, D.; Banks, B.A. Comparison of protective coatings for infrared transmitting windows. J. Vac. Sci. Technol. A 1986, 4, 3030. DOI: https://doi.org/10.1116/1.573622
Anton, P.G.M.B.H. Characterization of Hard Coatings–Part, I. DLC Coatings; Anton Paar GmbH: Vienna, Austrian, 2021.
Miyoshi, K.; Buckley, D.H. Adhesion and friction of single crystal diamond in contact with transition metal. Appl. Surf. Sci. 1980, 6161. DOI: https://doi.org/10.1016/0378-5963(80)90142-7
Shibuki, K.; Yagi, M.; Saijo, K.; Takatsu, S. Adhesion strength of diamond films on cemented carbide substrates. Surf. Coat. Technol. 1988, 3, 295. DOI: https://doi.org/10.1016/0257-8972(88)90159-4
Saijo, K.; Yagi, M.; Shibuki, K.; Takatsu, S. The improvement of the adhesion strength of diamond films. Surf. Coat. Technol. 1990, 43, 30. DOI: https://doi.org/10.1016/0257-8972(90)90057-J
Grill, A.; Meyerson, B.; Patel, A.V. Interface modifications for improving the adhesion of aC: H films to metals. J. Mater. Res. 1988, 3, 214. DOI: https://doi.org/10.1557/JMR.1988.0214
Mccune, R.C. Stresses and Mechanical Properties. Mater. Res. Soc. 1989, 50, 261.
Murakawa, M.; Takeuchi, S. Quantitative adhesion strength measurement of diamond coatings. Thin Solid Films 1989, 443–450. DOI: https://doi.org/10.1016/0040-6090(89)90513-0
Kuo, C.-T.; Yen, T.-Y.; Huang, A.T.-H. Adhesion and tribological properties of diamond films on various substrates. J. Mater. Res. 1990, 5, 2515–2523. DOI: https://doi.org/10.1557/JMR.1990.2515
Galuska, A. A Copper glassy carbon adhesion: Improvement through 27 Al+ implantation. Surf. Coat. Technol. 1990, 975–985. DOI: https://doi.org/10.1016/B978-1-85166-813-7.50096-6
Wang, M.; Jiang, X.; Stritzker, A.B. Adhesion of hydrogenated amorphous carbon films on silicon substrates and its enhancement. Thin Solid Films 1991, 97, 57–66. DOI: https://doi.org/10.1016/0040-6090(91)90221-I
Hartnett, T.; Miller, R.; Montanari, D.; Willingham, C.; Tustison, R. Intermediate layers for the deposition of polycrystalline diamonds films. J. Vac. Sci. Technol. A 1990, 8, 2129. DOI: https://doi.org/10.1116/1.577029
Murakawa, M.; Watanabe, S. Tribological properties of cubics amorphous and hexagonal boron nitride films. Surf. Coat. Technol. 1990, 145. DOI: https://doi.org/10.1016/B978-0-444-89455-7.50077-0
Abermann, R.; Kramer, R.; Mäser, J. Structure and internal stress in ultra-thin silver films deposited on MgF2 and SiO substrate. Thin Solid Films 1978, 52, 215–229. DOI: https://doi.org/10.1016/0040-6090(78)90140-2
Thurner, G.; Abennaram, R. Internal stress and structure of ultra-high vacuum evaporated chromium and iron films and their dependence on substrate temperature and oxygen particle pressure during deposition. Thin Solid Films 1990, 192, 277–285. DOI: https://doi.org/10.1016/0040-6090(90)90072-L
Staudhammer, K.P.; Mutt, L.E. Atlas T_’Binaly Alloys; Marcel Dekker Inc.: New York, NY, USA, 1973.
NBS. Selected Values of the Thermod. ’Namic Properties of Binal 3, Alloys; American Society for Metals: Metals Park, OH, USA, 1973.
Metals Reference Book, 5th ed.; Butterworths: Boston, MA, USA, 1976.
Kiryukhantsev-Korneev, P.; Sytchenko, A.; Sheveyko, A.; Moskovskikh, D.; Vorotylo, S. Two-Layer Nano composite TiC-Based Coatings Produced by a Combination of Pulsed Cathodic Arc Evaporation and Vacuum Electro-Spark Alloying. Materials 2020, 13, 547. DOI: https://doi.org/10.3390/ma13030547
Vitelaru, C.; Parau, A.C.; Constantin, L.R.; Kiss, A.E.; Vladescu, A.; Sobetkii, A.; Kubart, T. A Strategy for Alleviating Micro Arcing During HiPMS Deposition of DLC Coatings. Materials 2020, 13, 1038. DOI: https://doi.org/10.3390/ma13051038
Meškinis, Š.; Vasiliauskas, A.; Andrulevičius, M.; Peckus, D.; Tamulevičius, S.; Viskontas, K. Diamond Like C Films Containing Si. Structure and Non-linear Optical Properties. Materials 2020, 13, 1003. DOI: https://doi.org/10.3390/ma13041003
Meškinis, Š.; Vasiliauskas, A.; Viskontas, K.; Andrulevičius, M.; Guobienė, A.; Tamulevičius, S. Hydrogen-Free Diamond Like C Films with Embedded Cu- Nanoparticles. Structure, Composition and Reverse Saturable Absorption Effect. Materials 2020, 13, 760. DOI: https://doi.org/10.3390/ma13030760
Cox, J.T.; Hass, G.; Hunter, W.R. Infrared Reflectance of Silicon Oxide and Magnesium Fluoride Protected Aluminium Mirrors at Various Angles of Incidence From 8 µm to 12 µm. Appl. Opt. 1975, 14, 1247. DOI: https://doi.org/10.1364/AO.14.001247
Lettington, A.H.; Ball, G.J. The Protection of Front Surfaced Aluminium Mirrors with Diamond-Like C Coatings for Use in the Infrared. RSRE Memo. 1981, 3295.
Pellicori, S.F. Infrared Reflectance of a Variety of Mirrors at 480 Incidences. Appl. Opt. 1978, 17, 3335. DOI: https://doi.org/10.1364/AO.17.003335
Cox, J.T.; Hass, G. Aluminium Mirrors A1203 Protected with High Reflectance at Normal but Greatly Decreased Reflectance at Higher Angles of Incidence in the 8–12 µm Region. Appl. Opt. 1978, 17, 333. DOI: https://doi.org/10.1364/AO.17.000333
Hahn, R.E.; Seraphin, B.O. Spectrally Selective Surfaces for Photo Thermal Energy Conversion. Phys. Thin Ftilms 1978, 10, 1.
Drummeter, L.F.; Hass, G. Phys. Thin Films 1964, 2, 305.
Seraphin, B.O. Chemical Vapour Deposition of Spectrally Selective Surfaces. J. Vac. Sci. Technol. 1979, 16, 193–196. DOI: https://doi.org/10.1116/1.569905
Janai, M.A.; Allred, D.D.; Booth, D.C.; Seraphin, B.O. Optical Properties and Structure of Amorphous Silicon Films Prepared by Cvd. Solar Energy Mater. 1979, 1, 11. DOI: https://doi.org/10.1016/0165-1633(79)90053-4
Ball, G.J.; Lettington, A.H. Diamond-Like C Coatings for the Photo Thermal Conversion of Solar Energy. RSRE Memo. 1983, 3617.
Enke, K.; Dimigen, H.; Hubsch, H. Frictional Properties of Diamond-Like C Layers. Appl. Phys. Lett. 1980, 36, 291. DOI: https://doi.org/10.1063/1.91465
Bowden, F.P.; Young, J.E. Friction of Diamond, Graphite, and C and the Influence of Surface Films. Proc. R. Soc. Lond. A 1951, 208, 444. DOI: https://doi.org/10.1098/rspa.1951.0173
Kim, D.S.; Fischer, T.E.; Gallois, B. The Effects ofOand Humidity on Friction and Wear of Diamond-Like C Films. Surf. Coat. Technol. 1991, 49, 537. DOI: https://doi.org/10.1016/0257-8972(91)90113-B
Marchon, B.; Heiman, N.; Khan, M.R.; Lautie, A.; Ager, J.W.; Veirs, D.K. Raman And Resistivity Investigations of C Overcoats of Thin-Film Media. Correlations with Tibological Properties. J. Appl. Phys. 1991, 69, 5748. DOI: https://doi.org/10.1063/1.347909
Kim, S.B.; Wager, J.F. Diamond-Like C Films for Electroluminescent Applications. Surf. Coat. Technol. 1990, 43, 99. DOI: https://doi.org/10.1016/0257-8972(90)90064-J
Kapoor, V.J.; Mirtich, M.J.; Banks, B.A. Diamond-Like C Films on Semiconductors for Insulated-Gate Technology. J. Vac. Sci. Technol. 1986, 4, 1013. DOI: https://doi.org/10.1116/1.573442
Rothschild, M.; Arnone, C.; Ehrich, D.J. Eximer-Laser Etching of Diamond and Hard C Films by Direct Writing and Optical Projection. J. Vac. Sci. Technol. 1986, 4, 310. DOI: https://doi.org/10.1116/1.583320
Marotta, E.; Bakhru, N.; Grill, A.; Patel, V.; Meyerson, B. Diamond-Like C as an Electrical Insulator of Copper Devices for Chip Cooling. Thin Solid Films 1991, 206, 188–191. DOI: https://doi.org/10.1016/0040-6090(91)90419-X
Jenkins, G.M. Biomedical Applications of Cs and Graphites. Clin. Phys. Physiol. Meas. 1980, 1, 171–194. DOI: https://doi.org/10.1088/0143-0815/1/3/401
Jenkins, G.M.; De Carvallo, F.X. Biomedical Applications of carbon Fibre Reinforced Cin Implanted Prostheses. Carbon 1977, 15, 33–37. DOI: https://doi.org/10.1016/0008-6223(77)90071-9
Thomson, L.A.; Law, F.C.; Rushton, N.; Franks, J. Biocompatibility of Diamond-Like. Coat. Biomater. 1991, 12, 37. DOI: https://doi.org/10.1016/0142-9612(91)90129-X
Feng, W.; Jiaqi, L.; Jianlu, X. The Studies of Diamond-Like C Films as Biomaterials. Review. Colloid Surf. Sci. 2017, 2, 81–95.
Narin, S.; Shuichi, W.; Nutthanun, M. Elements-Added Diamond-Like C Film for Biomedical Applications. Adv. Mater. Sci. Eng. Hindawi 2019, 2019, 6812092. DOI: https://doi.org/10.1155/2019/6812092
Zhou, H.; Jiang, M.; Xin, Y.; Sun, G.; Long, S.; Bao, S.; Cao, X.; Ji, S.; Jin, P. Surface Deposition of Graphene Layer for Bioactivity Improvement of Biomedical 316 Stainless Steel. Mater. Lett. 2017, 192, 123–127. DOI: https://doi.org/10.1016/j.matlet.2016.12.043
Amanov, A.; Lee, S.W.; Pyun, Y.S. Low Friction and High Strength of 316L Stainless Steel Tubing for Biomedical Applications. Mater. Sci. Eng. C 2017, 71, 176–185. DOI: https://doi.org/10.1016/j.msec.2016.10.005
Bociaga, D.; Kaminska, M.; Sobczyk-Guzenda, A.; Jastrzebski, K.; Swiatek, L.; Olejnik, A. Surface Properties and Biological Behaviour of Si-DLC Coatings Fabricated by A Multi-Target DC-RF Magnetron Sputtering Method for Medical Applications. Diam. Relat. Mater. 2016, 67, 41–50. DOI: https://doi.org/10.1016/j.diamond.2016.01.025
Moolsradoo, N.; Watanabe, S. Influence of Elements on The Corrosion Resistance of DLC Films. Adv. Mater. Sci. Eng. 2017, 6, 3571454. DOI: https://doi.org/10.1155/2017/3571454
Ray, S.C.; Pong, W.F. Papakonstantinou, Iron, Nitrogen and Silicon Doped Diamond Like C (DLC) Thin Films. A Comparative Study. Thin Solid Films 2016, 610, 42–47. DOI: https://doi.org/10.1016/j.tsf.2016.04.048
Wang, J.; Ma, J.; Huang, W.; Wang, L.; He, H.; Liu, C. The Investigation of The Structures and Tribological Properties Of F-DLC Coatings Deposited on Ti-6Al-4V Alloys. Surf. Coat. Technol. 2017, 316, 22–29. DOI: https://doi.org/10.1016/j.surfcoat.2017.02.065
Yu, H.; Liu, Y.; Wang, Y.; Liu, L.; Li, B.; Li, Y.; Zhao, X. A Study on Poly (N-Vinyl-2-Pyrrolidone) Covalently Bonded Niti Surface For Inhibiting Protein Adsorption. Progress in Natural Science. Mater. Int. 2016, 26, 584–589. DOI: https://doi.org/10.1016/j.pnsc.2016.11.014
Kumar, A.M.; Suresh, B.; Das, S.; Obot, I.B.; Adesina, A.Y.; Ramakrishna, S. Promising Bio-Composites of Polypyrrole And Chitosan. Surface Protective and in Vitro Biocompatibility Performance on 316L SS Implants. Carbohydr. Polym. 2017, 173, 121–130. DOI: https://doi.org/10.1016/j.carbpol.2017.05.083
PremKumar, K.P.; Duraipandy, N.; Syamala, K.N.; Rajendran, N. Antibacterial Effects, Biocompatibility and Electrochemical Behavior of Zinc Incorporated Niobium Oxide Coating On 316L SS For Biomedical Applications. Appl. Surf. Sci. 2018, 427, 1166–1181. DOI: https://doi.org/10.1016/j.apsusc.2017.08.221
Wachesk, C.C.; Trava-Airoldi, V.J.; Da-Silva, N.S.; Lobo, A.O.; Marciano, F.R. The Influence of Titanium Dioxide on Diamond-Like C Biocompatibility for Dental Applications. J. Nanomater. 2016, 7, 8194516. DOI: https://doi.org/10.1155/2016/8194516
Gotzmann, G.; Beckmann, J.; Wetzel, C.; Scholz, B.; Herrmann, U.; Neunzehn, J. Electron-Beam Modification of DLC Coatings for Biomedical Applications. Surf. Coat. Technol. 2017, 311, 248–256. DOI: https://doi.org/10.1016/j.surfcoat.2016.12.080
Bociaga, D.; Sobczyk-Guzenda, A.; Szymanski, W.; Jedrzejczak, A.; Jastrzebska, A.; Olejnik, A.; Jastrzebski, K. Mechanical Properties, Chemical Analysis and Evaluation of Antimicrobial Response of Si-DLC Coatings Fabricated on AISI 316 LVM Substrate by A Multi-Target DC-RF Magnetron Sputtering Method for Potential Biomedical Applications. Appl. Surf. Sci. 2017, 417, 23–33. DOI: https://doi.org/10.1016/j.apsusc.2017.03.223
Schäfer, L.; Gäbler, J.; Mulcahy, S.; Brand, J.; Hieke, A.; Wittorf, R. Tribological Applications of Amorphous C and Crystalline Diamond Coatings. In Proceedings of the 43rd Svc Ann. Techn. Conf., Denver, KL, USA, 3 April 2000.
Hlin, M.; Hedenqvist, P. ‘Me-C. H Coatings in Motor Vehicles’. Wear 2001, 249, 302–309. DOI: https://doi.org/10.1016/S0043-1648(01)00565-8
Brand, J.; Beckmann, C.; Filfil, T.M.A.T. Reduzierung Von Reibungsverlusten Im Ventiltrieb Durch Besichtungen; Vdi Report, Vdi: Du Sseldorf, Germany, 1999; Volume 1472, pp. 299–312.
Muthuraja, A.; Naik, S.; Rajak, D.K.; Pruncu, C.I. Experimental investigation on chromium-diamond like carbon (Cr-DLC) coating through plasma enhanced chemical vapour deposition (PECVD) on the nozzle needle surface. Diam. Relat. Mater. 2019, 100, 107588. DOI: https://doi.org/10.1016/j.diamond.2019.107588
Grigoriev, S.; Volosova, M.; Fyodorov, S.; Lyakhovetskiy, M.; Seleznev, A. DLC-coating Application to Improve the Durabilityof Ceramic Tools. J. Mater. Eng. Perform. 2019, 28, 4415–4426. DOI: https://doi.org/10.1007/s11665-019-04149-1
Podgornik, S.J.; Hogmark, S. Dlc Coating of Boundary Lubricated Components. Advantages of Coating One of the Contact Surfaces Rather Than Both or None. Tribol. Int. 2003, 36, 843–849. DOI: https://doi.org/10.1016/S0301-679X(03)00102-6
Persson, K.; Gahlin, R. Tribological Performance of a Dlc Coating in Combination with Water-Based Lubricants. Tribol. Int. 2003, 36, 851–855. DOI: https://doi.org/10.1016/S0301-679X(03)00103-8
Kolawole, F.O.; Kolawole, S.K.; Varela, L.B.; Owa, A.F.; Ramirez, M.A.; Tschiptschin, A.P. Diamond-Like C (DLC) Coatings for Automobile Applications. In Engineering Applications of Diamond; IntechOpen: London, OH, USA, 2020.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.