Comprehensive Analysis of the Literature on Post-Culinary Waste Management Focuses on Cucurbitaceae Family
Keywords:
Fruit and vegetable peels, Waste materials, Pharmacological potentialAbstract
Fruits and vegetables produce the most food waste worldwide. Up to one-third of fruits and vegetables' peels and skins are discarded during preparation and processing. India is ranked second in terms of fruit and vegetable output. This post-culinary waste can be managed by extracting it into a bio conservation energy and also used to make effective drugs on biological species. The study investigates the Cucurbita moschata, Cucurbita maxima, Cucurbita pepo L., Citrullus lanatus T., Cucumis melo L., Lagenaria siceraria, Cucumis sativa. species shows different pharmacological activities. All the pharmacological activities are the prospect of transforming post-culinary waste into highly nutritious food additives or supplements. Cucurbits have strong root systems that grow in the top 12 inches and taproots that reach three feet, allowing them to efficiently use nutrients and water from the soil. The content of Carbohydrate content of C. maxima, C. pepo, and C. moschata meat ranged from 26.23 ± 0.20 g/kg raw weight to 42.39 ± 0.84 g/kg and 133.53 ± 1.44 g/kg. C. maxima contained considerably more carbohydrates in pulp and peel than C. pepo or C. moschata. C. maxima exhibited considerably higher protein levels in the pulp (11.31 ± 0.95 g/kg raw weight) and peel (16.54 ± 2.69 g/kg raw weight) than C. pepo and C. moschata. C. pepo seeds had considerably higher protein (308.8 ± 12.01 g/kg raw weight) compared to C. maxima (274.85 ± 10.04 g/kg raw weight). C. pepo and C. moschata meat have a low-fat content (0.55 ± 0.14 and 0.89 ± 0.11 g/kg raw weight, respectively). C. pepo and C. moschata peels exhibited similar fat content (4.71 ± 0.69 and 6.59 ± 0.41 g/kg raw weight, respectively). C. maxima seeds contain considerably higher fat (524.34 ± 1.32 g/kg raw weight) than C. pepo or C. moschata (439.88 ± 2.88 and 456.78 ± 11.66 g/kg raw weight, respectively). C. pepo's pulp and seeds had considerably less fiber and ash than C. moschata or C. maxima. C. maxima had the lowest moisture content, while all portions of C. pepo had the greatest.
Downloads
References
Dias, P. G. I., Sajiwanie, J. W. A., & Rathnayaka, R. M. U. S. K. (2020). Chemical composition, physicochemical and technological properties of selected fruit peels as a potential food source. International Journal of Fruit Science, 20(sup2), S240-S251.
del Pilar Sanchez-Camargo, A., Gutierrez, L. F., Vargas, S. M., Martinez-Correa, H. A., Parada-Alfonso, F., & Narvaez-Cuenca, C. E. (2019). Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. The Journal of Supercritical Fluids, 152, 104574.
Sulaiman, M. A., Yusoff, F. M., Kamarudin, M. S., Amin, S. N., & Kawata, Y. (2022). Fruit wastes improved the growth and health of hybrid red tilapia Oreochromis sp. and Malaysian mahseer, Tor tambroides (Bleeker, 1854). Aquaculture Reports, 24, 101177.
Malek, M. A., Barimiah, M. A., Al-Amin, M., Khanam, D., & Khatun, M. (2007). In vitro regeneration in pointed gourd. Bangladesh J. Agril. Res, 32(3), 461-471.
Huang, Z., Li, J., Zhang, J., Gao, Y., & Hui, G. (2017). Physicochemical properties enhancement of Chinese kiwi fruit (Actinidia chinensis Planch) via chitosan coating enriched with salicylic acid treatment. Journal of Food Measurement and Characterization, 11, 184-191.
Palma, C., Contreras, E., Urra, J., & Martínez, M. J. (2011). Eco-friendly technologies based on banana peel use for the decolourization of the dyeing process wastewater. Waste and Biomass Valorization, 2, 77-86.
Wadhwa, M. and Bakshi, M. P. S., Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products. FAO (UN), 2013–14.
Silva, C. R., Gomes, T. F., Andrade, G. C. R. M., Monteiro, S. H., Dias, A. C. R., Zagatto, E. A. G. and Tornisielo, V. L., Banana peel as an adsorbent for removing atrazine and ametryne from waters. J. Agric. Food Chem., 2013, 61, 2358–2363
Turner, T., & Burri, B. J. (2013). Potential nutritional benefits of current citrus consumption. Agriculture, 3(1), 170-187.
Zema, D. A., Calabrò, P. S., Folino, A., Tamburino, V. I. N. C. E. N. Z. O., Zappia, G., & Zimbone, S. M. (2018). Valorisation of citrus processing waste: A review. Waste management, 80, 252-273.
Bocco A, Cuvelier M-E, Richard H, Berset C (1998) Antioxidant activity and phenolic composition of citrus peel and seed extracts. J Agric Food Chem 46:2123–2129. https://doi.org/10.1021/ jf9709562
Anagnostopoulou, M. A., Kefalas, P., Papageorgiou, V. P., Assimopoulou, A. N., & Boskou, D. (2006). Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food chemistry, 94(1), 19-25
Marín, F. R., Soler-Rivas, C., Benavente-García, O., Castillo, J., & Pérez-Alvarez, J. A. (2007). By-products from different citrus processes as a source of customized functional fibres. Food chemistry, 100(2), 736-741.
de Moraes Barros, H. R., de Castro Ferreira, T. A. P., & Genovese, M. I. (2012). Antioxidant capacity and mineral content of pulp and peel from commercial cultivars of citrus from Brazil. Food chemistry, 134(4), 1892-1898.
Kohajdova, Z., Karovicova, J., & Simkova, S. (2009). Use of Apple fibre in bakery products. Acta fytotechnica et zootechnica, 12, 286-290.
Pathak, P. (2020). Medicinal properties of fruit and vegetable peels. Advances in Bioengineering, 115-128.
Davis, A.R., et al., Cucurbit grafting. Critical Reviews in Plant Sciences, 2008. 27(1): p. 50-74
Khare, C. P. (2004). Encyclopedia of indian medicinal plants: rational western therapy, ayurvedic and other traditional usage, botany. Springer.
KR, K. (1987). Basu BD. Indian medicinal plants. Vol. II. Dehradun: International Book Distributors, 1429.
Saurabh, S., Prasad, D., Masi, A., & Vidyarthi, A. S. (2022). Next generation sequencing and transcriptome analysis for identification of ARF and Aux/IAA in pointed gourd (Trichosanthes dioica Roxb.), a non-model plant. Scientia Horticulturae, 301, 111152.
Saurabh, S., Prasad, D., & Vidyarthi, A. S. (2017). In vitro propagation of Trichosanthus dioica Roxb. for nutritional security. Journal of Crop Science and Biotechnology, 20(2), 81-87.
Fukumoto, L. R., & Mazza, G. (2000). Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of agricultural and food chemistry, 48(8), 3597-3604.
Kpodo, F., Agbenorhevi, J. K., Alba, K., Bingham, R., Oduro, I., Morris, G., & Kontogiorgos, V. (2017). Pectin isolation and characterization from six okra genotypes. Food Hydrocolloids, 72, 323–330.
Kpodo, F., Agbenorhevi, J. K., Alba, K., Oduro, I., Morris, G., & Kontogiorgos, V. (2018). Structure-function relationships in pectin emulsification. Food biophysics, 13(1), 71–79.
Suwannapong, A., Talubmook, C., & Promprom, W. (2023). Evaluation of Antidiabetic and Antioxidant Activities of Fruit Pulp Extracts of Cucurbita moschata Duchesne and Cucurbita maxima Duchesne. The Scientific World Journal, 2023.
Jia, W., Gao, W., & Tang, L. (2003). Antidiabetic herbal drugs officially approved in China. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 17(10), 1127-1134.
Kirtikar, K. R., Basu, B. D., & CS, I. (2001). Indian medicinal plants, oriental enterprises. Dehradun, 6, 2029-2035.
Chen, Z., Wang, X., Jie, Y., Huang, C., & Zhang, G. (1994). Study on hypoglycemia and hypotension function of pumpkin powder on human. Jiangxi Chinese Medicine, 25(50), 132-139.
Koˇsť´ alova, ´ Z., Hrom´ adkova, ´ Z., Ebringerova, ´ A., Polovka, M., Michaelsen, T. E., & Paulsen, B. S. (2013). Polysaccharides from the Styrian oil-pumpkin with antioxidant and complement-fixing activity. Industrial Crops and Products, 41, 127–133.
Chatzimitakos, T., Athanasiadis, V., Kalompatsios, D., Mantiniotou, M., Bozinou, E., & Lalas, S. I. (2023). Pulsed Electric Field Applications for the Extraction of Bioactive Compounds from Food Waste and By-Products: A Critical Review. Biomass, 3(4), 367-401.
Govindaraj, A., Paulpandian, S. S., & Shanmugam, R. (2022). Comparative evaluation of the effect of rind and pulp extract of Citrullus lanatus on streptococcus mutans. Ann Dent Spec, 10(4), 34-9.
Rai, P. (2019). Fruit’s and vegetable’s peels: antimicrobial activity. World Journal of Pharmaceutical Research, 8, 1141-1153.
Babaiwa, U. F., Erharuyi, O., Falodun, A., & Akerele, J. O. (2017). Antimicrobial activity of ethyl acetate extract of Citrullus lanatus seeds. Tropical Journal of Pharmaceutical Research, 16(7), 1631-1636.
Olude, O., Paul, A., Oluwatobi, A., & Patrick, I. (2022). COMPARATIVE ACTIVITIES OF PHYTOCHEMICAL, ANTIOXIDANT AND ANTIMICROBIAL PROPERTIES OF LEAF EXTRACTS OF Bryophyllum pinnatum (Lam.), Alchornea cordifolia (Schumach. & Thonn.), Acalypha wilkesiana (Muell. Arg) AND SEED EXTRACT OF Citrullus lanatus (Thunb.). Covenant Journal of Physical and Life Sciences.
Neglo, D., Tettey, C. O., Essuman, E. K., Kortei, N. K., Boakye, A. A., Hunkpe, G., Amarh, F., Kwashie, P., & Devi, W. S. (2021). Comparative antioxidant and antimicrobial activities of the peels, rind, pulp and seeds of watermelon (Citrullus lanatus) fruit. Scientific African, 11, e00582.
Shofian, N. M., Hamid, A. A., Osman, A., Saari, N., Anwar, F., Pak Dek, M. S., & Hairuddin, M. R. (2011). Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits. International Journal of Molecular Sciences, 12(7), 4678–4692.
Maseko, I., Mabhaudhi, T., Ncube, B., Tesfay, S., Araya, H., Fessehazion, M., Chimonyo, V., Ndhlala, A., & Du Plooy, C. (2019). Postharvest drying maintains phenolic, flavonoid and gallotannin content of some cultivated African leafy vegetables. Scientia Horticulturae, 255, 70–76.
Tapas, A. R., Sakarkar, D., & Kakde, R. (2008). Flavonoids as nutraceuticals: A review. Tropical Journal of Pharmaceutical Research, 7(3), 1089–1099.
Enneb, S., Drine, S., Bagues, M., Triki, T., Boussora, F., Guasmi, F., & Ferchichi, A. (2020). Phytochemical profiles and nutritional composition of squash (Cucurbita moschata D.) from Tunisia. South African Journal of Botany, 130, 165–171.
Ijarotimi, O. S., Wumi-Adefaye, O. A., Oluwajuyitan, T. D., & Oloniyo, O. R. (2022). Processed white melon seed flour: Chemical composition, antioxidant, angiotensin1-converting and carbohydrate-hydrolyzing enzymes inhibitory properties. Applied Food Research, 2(1), Article 100074.
Chanda S, Nagani K. Antioxidant capacity of Manilkara zapota L. leaves extracts evaluated by four in vitro methods. Nature and Science. 2010; 8(10): 260-6.
Perez MB, Banek SA, Croci CA. Retention of antioxidant activity in gamma irradiated argentinian sage and oregano. Food Chemistry. 2011; 126: 121-6.
Staszewski M, Pilosof MR, Jagus RJ. Antioxidant and antimicrobial performance of different Argentinean green tea varieties as affected by whey proteins. Food Chemistry. 2011; 125: 186-92.
Kaneria M, Bapodara M, Chanda S. Effect of extraction techniques and solvents on antioxidant activity of pomegranate (Punica granatum L.) leaf and stem. Food Analytical Methods. 2012; 5: 396-404.
Elhadi, I.M., et al., Antigiardial activity of some Cucurbita species and Lagenaria siceraria. Journal Of Forest Products & Industries, 2013. 2(4): p. 43-47.
Agrawal S, Katare C. Antioxidant activity, total phenolic compound and flavonoid content of vacuum dried extract of L. siceraria. Glob J Multidiscip Stud 2015;4:302-8.
Mohan R, Birari R, Karmase A, Jagtap S, Bhutani KK. Antioxidant activity of a new phenolic glycoside from Lagenaria siceraria Stand. fruits. Food Chem 2012;132:244-51.
Attar UA, Ghane SG. Phytochemicals, antioxidant activity and phenolic profiling of Diplocyclos palmatus (L.) C. Jeffery. Int J Pharm Sci 2017;9:101-6.
Smita, T., et al., In-vitro anthelmintic activity of seed extract of Lagenaria siceraria (Molina) Standley fruit. J Pharm Res, 2009. 2(7): p. 1194- 1195.
Shah, B., A. Seth, and R. Desai, Phytopharmacological profile of Lagenaria siceraria: a review. Asian Journal of Plant Sciences, 2010. 9(3): p. 152-157
Badmanaban, R. and C. Patel, Studies on anthelmintic and antimicrobial activity of the leaf extracts of Lagenaria siceraria. J Glob Pharma Technol, 2010. 2: p. 66-70.
Sahu T, Sahu J. Cucumis sativus (cucumber): a review on its pharmacological activity. Journal of Applied Pharmaceutical Research. 2015 Jan 25;3(1):04-9.
Tuama AA, Mohammed AA. Phytochemical screening and in vitro antibacterial and anticancer activities of the aqueous extract of Cucumis sativus. Saudi journal of biological sciences. 2019 Mar 1;26(3):600-604.
Mandey JS, Wolayan FR, Pontoh CJ, Sondakh BF. Phytochemical characterization of cucumber (Cucumis sativus L.) seeds as candidate of water additive for organic broiler chickens. Journal of Advanced Agricultural Technologies. 2019 Mar;6(1).
Saidu AN, Oibiokpa FI, Olukotun IO. Phytochemical screening and hypoglycemic effect of methanolic fruit pulp extract of Cucumis sativus in alloxan-induced diabetic rats. Journal of Medicinal Plants Research. 2014 Oct 17;8(39):1173-1178.
Minaiyan M, Zolfaghari B, Kamal A. Effect of hydroalcoholic and buthanolic extract of Cucumis sativus seeds on blood glucose level of normal and streptozotocin-induced diabetic rats. Iranian journal of basic medical sciences. 2011 Sep;14(5):436-442.
Kulczyński, B., Sidor, A., & Gramza-Michałowska, A. (2020). Antioxidant potential of phytochemicals in pumpkin varieties belonging to Cucurbita moschata and Cucurbita pepo species. CyTA-Journal of Food, 18(1), 472-484.
Chigurupati, S., AlGobaisy, Y. K., Alkhalifah, B., Alhowail, A., Bhatia, S., Das, S., & Vijayabalan, S. (2021). Antioxidant and antidiabetic potentials of Cucurbita pepo leaves extract from the gulf region. Rasayan Journal of Chemistry, 14(4), 2357-2362.
Singh, J., Singh, V., Shukla, S., & Rai, A. K. (2016). Phenolic content and antioxidant capacity of selected cucurbit fruits extracted with different solvents. J. Nutr. Food Sci, 6(6), 1-8.
Shofian, N. M., Hamid, A. A., Osman, A., Saari, N., Anwar, F., Dek, M. S. P., & Hairuddin, M. R. (2011). Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits. international Journal of molecular sciences, 12(7), 4678-4692.
Muhamad, N., Sahadan, W., & Ho, L. H. (2018). Effect of drying temperatures and extraction solvents on total phenolic, flavonoid contents and antioxidant properties of immature Manis Terengganu Melon (Cucumis melo). Journal of Agrobiotechnology, 9(1S), 114-121.
Patel, S. B., Attar, U. A., & Ghane, S. G. (2018). Antioxidant potential of wild Lagenaria siceraria (Molina) Standl. Thai Journal of Pharmaceutical Sciences (TJPS), 42(2).
Yunusa, A. K., Dandago, M. A., Abdullahi, N., Rilwan, A., & Barde, A. (2018). Total Phenolic Content and Antioxidant Capacity of Different Parts of Cucumber (L.). Acta Universitatis Cibiniensis. Series E: Food Technology, 22(2), 13-20.
Saeed, F., Afzaal, M., Niaz, B., Hussain, M., Rasheed, A., Raza, M. A., ... & Al Jbawi, E. (2024). Comparative study of nutritional composition, antioxidant activity and functional properties of Cucumis melo and Citrullus lanatus seeds powder. Cogent Food & Agriculture, 10(1), 2293517.
Gopalasatheeskumar, K. Different Extraction Methods for the Extraction of Phenolics, Flavonoids, Antioxidant and Antidiabetic Phytochemicals from Momordica cymbalaria Leaves. Indian Journal of Natural Sciences, 12(70), 0976-0997.
Kanupriya, J., & Arihara Sivakumar, G. (2019). Antioxidant potential and Phytochemical analysis of fruit extract of Cucurbita pepo. Int. J. Curr. Res. Chem. Pharm. Sci, 6(3), 22-32.
Gowe, C. (2015). Review on potential use of fruit and vegetables by-products as a valuable source of natural food additives. Food Sci. Qual. Manag, 45(1), 47-61.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.